数学
高校生
解決済み

複素数の問題です
(1)の誘導があるので、(2-1)は解けるのですが、
(1)の誘導がない状態で、この問題が出てきた時は(1)のように考えて解くしかないのでしょうか
他の解法があったら教えて欲しいです

a- 原点を0とする複素数平面上に, 0 と異なる点A(a),および, 2点 0, A を通る直線がある . (1) 直線に関して点P(z) と対称な点をP'(z') とするとき, z==z が成り立つことを示せ (2) α=3+iとする. β=2+4i, y=-8+7i を表す点をそれぞれB, Cとおく. (2-1) 点Bの直線に関して対称な点をB' (B') とする. B' を求めよ. a (22) 線分 OA上の点Q (w)について, ∠AQB=∠CQO が成り立つときのwを求めよ. 原点を通る直線Iに関する折り返し 実軸に関する対称点はすぐに分かる (バーをつけるだけ。2z)ので,lが実軸に重なるように 0 を中心に回転さ せて考える.1 (z軸を回転したもの)に関して対称な位置にあるP(z), P'(z')については,0回転を表す複素数をw とすると, P, P' を -0 回転した (九工大工) ya P(z),l A, •P'(z) Q *Q (1/1). α (2/12) 00 w が実軸に関して対称であるから,ととらえる キ w w ことができる. 解答 () x (1)arga=0 とおくと, P, P' を0のまわりに0回転して得られる2点Q, 上図を参照. Q'は実軸に関して対称である. 恋した a=|al (coso+isin0) であるから, 0回転を表す複素数は, a (=w とおく ) |a| よって、ユーズ = z'=w. : w a- -2 ← w a a a ÷ = \a\ a w w W w 3+i (2) (2-1) (1)KI, B'=B= 3-i a (22) B'とBはに関して対称であるから, (2-4i)=4-2i w 10-10i 3-i (10-10i) (3+i) 10 =(1-i) (3+i)=4-2i C(Y) y ∠AQB' = ∠AQB=∠CQO α, B, y, B' の具体的な値から, 右図のようにな り 3点 B' QCは同一直線上にある. よって, w=(1-s)β'+sy (sは実数 ) w=(1-s) (4-2i)+s(-8+7i) =4-12s+(9s-2) i QはOA上にもあるから, w=tα=t(3+i)=3t+ti (tは実数) とおける.これらが等しいから, 4-12s=3t, 9s-2=t 10 s= t= 39 4 13 12 4 w=t(3+i)= . + -i 13 13 B(β) A(a) B'(B') Q(w) OQ= (1-s) OB'+sOC 4-12s=3(9s-2)
数3 複素数

回答

✨ ベストアンサー ✨

xy平面座標(1次関数)として解けます
ーーーーー
A(3,1)、B(2,4)
直線OAはy=1/3・x
直線BB'は傾きが-3になるのでy=-3・x+b、B(2,4)を通るからy=-3・x+10

y=1/3・xとy=-3・x+10の交点は(3,1)
B(2,4)の(3,1)に対する点対称B'は(4,-2)
β=4-2i

この回答にコメントする
疑問は解決しましたか?