学年

教科

質問の種類

数学 高校生

エ、オはσ(Y)=4×0.3=1.2とならないのに、 カ、キは、σ(Z)=4×0.3=1.2としている理由が知りたいです。 エ、オだけなぜ分散を計算してから標準偏差を求めるのでしょうか?

(1)母集団から無作為抽出された標本の独立性とその特徴について、 実際の例をもと に考える。 いま,内容量 50g と表示された小袋が四つ入ったお菓子の袋(以下,「大袋」と呼 ぶ)があったとする。以下では,袋の重さは考えずに、お菓子の重さだけを考える ことにする。四つの小袋に入っているお菓子の重さを, それぞれ X1, X2, X3, X4(g) とし,各X; (i = 1, 2, 3, 4) は平均 (期待値) 51.0 標準偏差 0.3 の正規分布 N(51.0, 0.32) に従うとする。 このとき,Y=X1+X2+ X3 + X4 とおけば,各X; は互いに独立と考えてよいか ら,確率変数 Y の平均は E(Y)=|アイウ 標準偏差は。 (Y)= I 計算できる。 オ と ところで,大袋に表示されているお菓子の重さは50×4=200(g) である。 これ と対比するために, 小袋に分けられていない四袋分のお菓子の重さを表す確率変 数 Z = 4X を考える。 ここで Xは正規分布 N(51.0, 0.32) に従うとする。 このとき, 確率変数の定数倍の平均と標準偏差についての関係式によれば、Zの 平均はE(Z)= アイウであるが,標準偏差はo (Z) = カ キ となり, 上 で求めた。(Y)の計算結果と異なる。この差は,X1,X2,Xs, X』 が無作為標本で あり,各X; が互いに独立であることに起因している。 この例からわかるように、無作為標本の性質,すなわち, 確率変数が互いに独立 な同一の分布に従っていることを理解しておくことが重要である。 (数学II,数学B,数学C第5問は次ページに続く。)

解決済み 回答数: 1
数学 高校生

高一数1 上のルール通りに解くと赤の答えにならないもですが、、途中式お願いします🤲

20 第5章 第5章 データの分析 データの分析 sx ータの各値に一斉にを加えると、データの各値も平均値もんだ るから、データの各値がら平均値を引いた差、すなわも偏差はノ また、 デー たがって、分散と標準差は変わらない。 ータの各値は一斉にαを掛けたデータの各値も平均値 になるから, データの各値の偏差も4倍になる。 したがって、 倍になり,標準偏差は|a|倍になる。 あるクラスの生徒を対象に 50点満点の試験を行い,採点した ところ,平均値は37点, 分散は25であった。 (1)生徒全員の得点に10点を加えると, 平均値は 37+10=47 (点) となるが, 普通に計算 (2)生徒全員の得点を2倍すると, 分散は 変わらない。 1815 する順 48 xt 平均値は 2×37=74(点)となり 分散は 10 1,8 で代入 15 22×25=100 となる27017/12 接習 1 ある都市の日ごとの最高気温を摂氏度(C) で計測し, 20日分のデー タを得た。 その平均値は 15.0℃, 分散は 9.0 であった。このデー 華氏度 (°F) に変更したときの, 平均値,分散、標準偏差を求めよ。 ただし、摂氏度がx℃のときの華氏度を y°F とすると, 次の関係がある。 y=1.8x+32 84.6 10.2 116.2 Vo.2 27 29.165.4

解決済み 回答数: 1