学年

教科

質問の種類

物理 高校生

至急!この問題の解法を教えてください🙇‍♀️

... 79.〈音波の性質> 図1上図のように原点Oにスピーカーを置き, 一定の振幅で, 一定の振動数の音波をx軸の正の向きに連続的に発生させる。 空気の圧力変化に反応する小さなマイクロホンを複数用いて, x 軸上 (x>0) の各点で圧力の時間変化を測定する。 ある時刻において,x軸上(x>0)の点P付近の空気の圧力か xの関数として調べたところ、 図1下図のグラフのようになっ た。 ここで距離 OP は音波の波長よりも十分長く,また音波が存 在しないときの大気の圧力をする。圧力が最大値をとる x=x から, 次に最大値をとる x=x までのxの区間を8等分 X1,X2, ...,と順にx座標を定める スピーカー X3 X4 X5 Poss XoX1 X2 点P付近の拡大図 図1 から x までの各位置の中で, x軸の正の向きに空気が最も大きく変位している位置, およびx軸の正の向きに空気が最も速く動いている位置はそれぞれどれか。 次に点Pで空気の圧力の時間変化を調べたところ、図2のグ P4 ラフのようになった。 圧力が最大値をとる時刻t=to から, 次に最大値をとる時刻t=ts までの1周期を8等分した、 た,..., と順に時刻を定める。 からまでの各時刻の中で, x軸の正の向きに空気が最も 大きく変位しているのはどの時刻か。 図3のように,原点Oから見て点Pより遠い側の位置に,x軸 に対して垂直に反射板を置くと,圧力が時間とともに変わらず常 po となる点がx軸上に等間隔に並んだ。 (3)これらの隣接する点の間隔dはいくらか。なお,音波の速さ をcとする。 Pos ta ta ts to tit tet ts t 図2 図3 反射板 (4) (3)の状態から気温が上昇したところ, (3) で求めたdは増加した。 その理由を説明せよ。

回答募集中 回答数: 0
物理 高校生

この問題の(3)がよく理解できません。詳しく解説して欲しいです。お願いしますm(_ _)m

0 の位置 の位置 x〔m〕 が経過 形 基本例題 32 定在波(定常波) 153,154 解説動画 x軸上を要素の等しい2つの正弦波 a, b が,互いに逆向きに進んで重 なりあい、定在波が生じている。 図には, 波 a, 波 b が単独で存在したときの,時刻 t=0s における波a (実線)と波b (破線) が示してある。波の速さは2.0cm/sである。 (1) 図の瞬間(t=0s) の合成波の波形をかけ。 (2) 定在波の腹の位置x を 0≦x≦4.0(cm) ↑y[cm] a の範囲ですべて求めよ。 0 12 13 4 x[cm] (3) t=0s の後,腹の位置の変位の大きさが 最大になる最初の時刻を求めよ。 -1 -2 指針 定在波では,まったく振動しない所(節)と大きく振動する所 (腹)が交互に並ぶ。 解答 波波bの波長 入=4.0cm 周期 T=_4.0 =2.0S V 2.0 (1) 波の重ねあわせによって 図1 Ay[cm] 2 1 0 a 合成波 4 |x〔cm〕 x〔m〕 波形を示す (2) 図1の合成波の波形で、変位の大きさが最大 となる位置が腹の位置。 -1 -2 図1(t=0) ↑y[cm] 合成波 6.0 t[s] 振動を示す x=1.5cm, 3.5cm 8 (3) t=0s (図1の状態)の後,波 a,波bが 1/3 ずつ進むと、図2のように, 山と山(谷と谷) が重なり,腹の位置での変位の大きさは最大 になる。 進む時間はTだから 1=1/21=20-1 -= 0.25s 8 2 11 O 13 4 x[cm] -1 -2 図2(t=1/27)

回答募集中 回答数: 0
物理 高校生

【物理記述の仕方】 新しく自分で文字を置くときに二枚目の写真のように細かく説明しなくても三枚目の写真のように図に記入すれば大丈夫ですよね?体積や圧力をV,Pを使って置いてるのでイレギュラーな文字の置き方しない限りは説明入りませんよね?💦

図のように両端を密閉したシリンダーが, なめら 19 かに動くピストンで2つの部分A, B に分けられて おり,それぞれに単原子分子理想気体が1 [mol] ず つ入れられている。 シリンダーの右端は熱を通しやすい材 A B 料で作られているが, それ以外はシリンダーもピストンも断熱材で作られている。は じめの状態では, A, B 内の気体の体積は等しく, 温度はともに To [K] であった。次 に, 右端からB内の気体をゆっくりと熱したところ, ピストンは左向きに移動し, 最終 的にA内の気体の体積はもとの半分になり, 温度は T1 [K] になった。 気体定数を R[J/(mol・K)] として,以下の問いに答えよ。 (1)この変化の過程で,A内の気体が受けた仕事は何〔J〕 か。 (2) 変化後のA内の気体の圧力は最初の状態の何倍になったか。 (3) 変化後のB内の気体の温度は何〔K] になったか。 (4) この変化の過程で, B内の気体が外部から吸収した熱量は何 [J] か。 ( 京都府大)

回答募集中 回答数: 0
物理 高校生

(2)でなぜBが高電位になるのか分かりません 回転すると右向きの磁束が増えるからそれを妨げるために、AからBの向きに電流が流れるのでAが高電位になるんじゃないんですか?

f B セント 135 〈交流の発生> 113 (2) 辺abは磁場を横切る体なので、 誘導起電力の式 「V=Blo」 を用いる。 (3)(pq間に発生する誘導起電力) (コイルの各辺に生じる誘導起電力の和) 標準問題 (5) コイルに生じる誘導起電力の大きさは、ファラデーの電磁誘導の法則 「V=-N4 at」を用いる。 A 135.〈交流の発生> 図1のような辺の長さが1の正方形 abedからなる1回 巻きのコイルを,磁束密度Bの均一な磁場の中に置き、 磁 力線に垂直な軸のまわりに,一定の角速度で図の矢印の 向きに回す。 コイルの両端はそれぞれリング状の電極p と qを通して,常に抵抗Rとつながっている。 このとき、コ イルは回転するが, リング状の電極と抵抗は静止したまま である。図2(a) と (b)は回転軸にそって見たコイルと磁力線 (a) = 0 である。図2のように,コイルの面と磁場の角度は,時 N S P 9 R- 図 1 B (b) t=to N S N S 刻 t=0 のとき 0=0, 時刻t=to のとき 0<B<1であ R cd ab 8 図2 った。次の問いに答えよ。 [A]各辺に生じる誘導起電力を考えることで, pq 間に発生する誘導起電力を考える。答 えには1,B,w, tのうちから必要なものを用いよ。 〇 (1) 辺 ab 部分の速さを表せ。 (2)時刻における辺 ab 部分に生じる誘導起電力の大きさを表せ。 (3) 時刻 t における各辺に生じる誘導起電力を足し合わせることで, pq間に発生する誘導 起電力 Vの大きさを表せ。 〔B〕 ファラデーの電磁誘導の法則を考えることで, pq 間に発生する誘導起電力を考える。 答えには l, B, w, tのうちから必要なものを用いよ。 (4) 時刻 t におけるコイルを貫く磁束を表せ。 (5) 時刻 t におけるコイルに生じる誘導起電力 Vの大きさを表せ。 ただし、必要であれば, 次式を利用してよい。 Asin wt =wcoswt, 4t ⊿coswt =-wsin wt At [C] 抵抗に流れる電流I と消費電力Pを考える。 p から抵抗を通って q に流れる電流の向 きを正とする。 記 (6) 時刻 t = to における辺 ab に流れる電流Iの向きを図1に矢印で示せ。 また電流Iに よってコイルが磁場からどのような向きの力を受けるか説明せよ。 (7) 消費電力の最大値 Pmax を1, B, w, R のうちから必要なものを用いて表せ。 また, P と wtの関係を 0≦wt2 の範囲でグラフに図示せよ。 [23 徳島大〕 (8)電流が磁場から受ける力 「FIBL」の向きは、フレミングの左手の法則より判断する。 2 (7)消費電力Pは, 「PIV=PR=」から適当な形の式を用いる。 〔A〕 (1) 辺abの速さひab は, コイルの回転半径が であるので,速さと角 2 速度の関係式 「v=rw」 より Vab 51=- (2) 時刻において,辺ab は水平から角度 wt 回転しているので 辺ab の磁 場に垂直な方向の速度成分 Vabi は図a より 上向きを正として Vabi = Dab COSWt=coswt と表される。 辺ab に生じる誘導起電力の大きさ | Vab|は, 「V=Bl」 より |Vab|=|Blvabi|=| 11=B1.12 cost=/12/Blacoswt| このとき,swt< ならば誘導起電力の向きはレンツの法則A より bが高電位となる向き ※Bである。 (3) 磁場を垂直に横切る辺は辺abと辺cdであり, これらの辺にのみ誘導起 電力が生じる。 辺cdについても 時刻に生じる誘導起電力の大きさを |Veal として求めると, 辺ab についての(1),(2)と同様になり <<-*A によっ くる磁 れた磁 B 公式カ 状 |V|=|Blucas|=|Bl-cos wt|=Bl³w|cos wt| 誘導書 Out < ならば誘導起電力の向きはレンツの法則よりdが高電位とな る向きである。 求め V=|Van|+|Vcal=12Blwlcoset|+1/2 よって Vab と Veaの誘導起電力の向きは同じ方向であるので, pq間に発 生する誘導起電力の大きさ Vは Blwcoswt|=Bl°ω\coswt| 〔B〕 (4) コイルの面積をSとする。 時刻において, コイルは水平から角 ・度回転しているので、 磁場に対して直角方向に射影したコイルの面積 Sは図bより S=S|sint|=|sinet| このとき、コイルを貫く磁束は、磁束の式 「Ø=BS」より, 0<wt<πで のコイルの向きに対してコイルを貫く磁束を正とすると =BS = Blsinat (5)(4)においてコイルに生じる誘導起電力 Vの大きさ|Vは,ファラデーの 電磁誘導の法則 「V=-N2」より 4t |V|=|-1×40 |=|_ A(BIªsinwt)|=|- BF²-- =l-Bl2wcoswtl=Blw\coswt|C Asin wt At ---

回答募集中 回答数: 0
1/58