学年

教科

質問の種類

物理 高校生

(3)のどうしてmが2mになるんじゃなくてKが2kになるのか分かりません。普通に考えて重さ2倍にならないからkが2倍ですか?? あと、(3)のx=a/2のときのtなんですが、私の解き方のどこがダメなのか教えて欲しいです🙇🏻‍♀️答えが合わないんです😭3枚目です。 よろしくお... 続きを読む

必解 52. 2本のばねによる単振動〉 A 00000 P 図のように、なめらかな水平面上に質量mの物体Pが同 じばね定数をもった2つのばね A,Bとばねが自然の長さ にある状態でつながっている。 水平面上右向きにx軸をとり, このときの物体Pの位置をx座標の原点とする。 物体PをばねAのほうへ原点Oよりαだ けずらしてからはなす。 このとき物体Pは単振動する。単振動は等速円運動のx軸上への正 射影の運動であるといえる。時刻 t=0において, 物体Pはちょうどx座標の原点Oを正の 向きに向かって通過した。 ばねの質量はないものとして、次の問いに答えよ。 (1) 任意の時刻における物体Pの位置xおよび速度vを,等速円運動の角速度を用いて 表せ。 (2) 任意の時刻において物体Pが位置xにあるときの加速度αを, ωとxを用いて表せ。 また, 2つのばねAとBから受ける力Fを, kとxを用いて表せ。 (3) 物体Pがx=α に達してから, 初めて原点Oを通過するまでの時間 to と, 初めて x=. 1 =1aを通過するまでの時間を,kmを用いて表せ。 (4) 物体Pの運動エネルギーKの最大値とそのときの位置, およびばねの弾性力による物体 Pの位置エネルギーUの最大値とそのときの位置を表せ。 ただし, wやTを用いないこと。 (5) 物体Pが単振動しているときの速度と位置xの関係を求め, vを縦軸に, xを横軸にと ってグラフに示せ。このとき座標軸との交点を, a, k および を用いて表せ。また,物 [香川大 改 体Pが時間とともに図上をたどる向きを矢印で表せ。

解決済み 回答数: 1
物理 高校生

3枚目の写真の緑のマーカーで囲った※Bの部分の言っていることが分からないので教えてほしいです。

64.〈ピストンで封じられた気体分子の運動〉 なめらかに動くピストンがついた容器内に質量mの単原子分子 からなる理想気体が封入されている。 ピストンおよび容器は断熱材 でできている。図に示すように x, y, z軸をとり, 容器の断面積は 一様であるとする。 次の問いに答えよ。 〔A〕 まず,ピストンが固定されており, ピストンの底部は容器の 底からんの距離にある場合を考える。 (1)容器内のある1個の気体分子を考え,そのz軸方向の速さを ひとする。分子がピストンに弾性衝突したときピストンが受 ける力積の大きさを求めよ。 (2) (1)において1個の分子がある時間 4t にピストンに衝突する回数を答えよ。 (3)(2)においてN個の分子によって 4tの間にピストンが受ける平均の力の大きさを答 えよ。ただし,気体分子全体のvzの2乗の平均 22 を用いよ。 〔B〕 次に,ピストンをz軸の負の向きにより十分に小さい一定の速さで押しこんだ 場合を考える。なお理想気体では, 内部エネルギーは各気体分子の運動エネルギーの総和 となる。 z軸方向の速さvz の1個の分子がピストンに弾性衝突した後の軸方向の分子の速さ vz を求めよ。 また,衝突前後の分子の運動エネルギーの変化量⊿u を答えよ。この際, 1± b b は十分小さいことより (10) = 0 という近似が成りたつことを用いよ。 Vz Vz Vz Vz (54)において⊿t の間のN個の分子の運動エネルギー変化の合計 4U を v22 を用いて答 えよ。 ただし, 4t の間のピストンの移動距離はんに比べて十分小さいものとする。 〔A〕のときの容器の体積を V,気体の温度を T, 内部エネルギーをひとおく。また, 4tの間の体積の変化を⊿V, 温度の変化を⊿T とする。 気体分子全体の速さ”の2乗 44 が成りたつこと の平均をとしたときが成りたつこと,また, U を用いて 4 を 4T, T を用いて表せ。 AV V 記 (7/3)で求めたを用いて、4tの間に気体がピストンにされた仕事⊿W を答えよ。 また, この結果を(5) と比較して,気体を断熱圧縮したとき,気体がされた仕事と運動エネルギ ーの関係について説明せよ。 [23 埼玉大改]

解決済み 回答数: 1
物理 高校生

(3)の運動エネルギーの総和の問題で、なぜ2枚目のように解いてはいけないのですか。A,B,C,D全て同じ速さだと思うのですが...

必解 30. <あらい板上の物体の運動〉 物体 D (2m) 物体A(2m) 物体B(3m) 机 物体 C (m) 図のように, 水平な机の上に直方体の物体Aを置 その上に直方体の物体Bをのせる。 Bには物体 Cが, Aには物体Dが,それぞれ糸でつながれてお り,CとDは, 机の両側にある定滑車を通して鉛直 につり下げられている。 A, B, C, Dの質量は,そ れぞれ, 2m〔kg〕, 3m[kg], m 〔kg〕, 2m [kg] であ る。机とAの間の摩擦はないが, AとBとの間には摩擦力がはたらく。 初めにAとBを手で 固定してすべてを静止させておき, 静かに手をはなして運動のようすを観測する。 運動は紙 面内に限られるものとし, また観測中にBがAから落ちることや, Aが机から落ちることは ないものとする。滑車はなめらかで軽く, 糸は軽くて伸び縮みせず、たるむことはないもの とする。空気抵抗は無視し, 重力加速度の大きさをg 〔m/s'] として次の問いに答えよ。 BはA上をすべらずに,Aといっしょになって机の上を左へ運動する場合について考える。 (1) このときのAの加速度の大きさを求めよ。 (2)このときのAとBの間にはたらく摩擦力の大きさを求めよ。 (3)Dがん 〔m〕だけ落下したときの, A, B, C, D の運動エネルギーの総和を求めよ。 次に,Bは机の上の同じ場所に静止したままで, Aが左に運動する場合を考える。 (4) この場合の, AとBの間の動摩擦係数を求めよ。 (5)Dがんだけ落下したときの, A, B, C,D の運動エネルギーの総和を求めよ。 最後に,Aは左へ運動しBが右へ運動する場合を考える。ただし、このときのAとBの間 の動摩擦係数を1/3として、次の問いに答えよ。

解決済み 回答数: 1
物理 高校生

2つ質問があります 1:⑶、⑷の解き方がわかりません 教えてくださいお願いします🙇 2:次高校3年生です。重要問題集のことなんですけど、どの問題も後半が難しすぎて全く解けません。 学校の宿題で出されるので、解いているんですけど、ほぼ赤です。 重要問題集ってみんなスラ... 続きを読む

必解 35. くばねにつながれた物体との衝突〉 M m Vo B A 0 x 図のように、なめらかな水平面上に, 一端が固定さ れたばね定数んのばねが置かれている。 ばねの他端に は質量mの物体Aがつけられている。 初め、ばねは 自然の長さになっており, 物体Aは静止している。 図のように水平方向にx軸をとり, 紙面 に向かって右向きを正とする。 物体Aの初めの位置を x=0 とする。 質量 M (M> m) の物体Bを, 速度vo (vo>0) 物体Aに衝突させた。 物体Aと物体Bは 弾性衝突し, 衝突直後, 両物体は右方向に進み,その後, 物体Aと物体Bはばねが最も縮ん だ後に再衝突を起こした。 ばねは弾性力がフックの法則に従う範囲で伸縮し, また, ばねの 質量,および物体の大きさはないものとする。 初めの衝突の瞬間を時刻 t = 0 とし、 再衝突の起きる時刻を とする。 初めの衝突から再 衝突が起きるまでの間, 物体Aは単振動を行った。 次の問いに答えよ。 必要であれば、円周 率を用いよ。 (1) 初めの衝突直後の物体A, 物体Bの速度をそれぞれ VA, UB とする。 (a) 初めの衝突前後で成りたつ運動量保存の法則を表す式を書け。 Bre (b) VA, UB を,m, M, vo を用いて表せ。 (2) ばねが最も縮んだとき, 物体Aは, x=Lの位置にあった。 L を va, k, m を用いて表せ。 (3) 初めの衝突から再衝突までの間の任意の時刻t (0≦t≦t) における物体A, 物体Bの位置 を XA, XB とする。XA を va,m, M, k, tの中から,XB をUB, m, M, k, tの中から必要 なものを用いてそれぞれ表せ。 (4) ばねが最も縮んだ後,物体Aと物体Bは,x=1/2の位置で再衝突した。この場合の再衝 突が起こる時刻を,m, kを用いて表せ。 [18 広島大 ]

解決済み 回答数: 1
1/4