学年

教科

質問の種類

物理 高校生

色塗ってるとこの式変形分からないので教えてください!お願いします

こると A cosx と 点dでは CA の媒質の 2πA T -=2U 振動から遅 yは、時刻における原 点での変位に等しい。 ゆえに y=Asin- sin 27 (t-x) ひ ) 波が原点から固定端を経て位置xに伝わるのにかかる時間は,原点から L+(L-x)=2L-xだけ移動しているので、 (3) 2L-x V であるA また,固定端反射では波の位相がずれることから, 時刻における位置x での反射波の変位 y2 は, 時刻t-2-xにおける原点の変位の位相を けずらしたものになる。 2π T Asin (27 (1-21-x)+x|--Asin 2 (1-21-x)on ※B 2L よって y=Asin (4) (2) (3)の合成波の変位をyとすると 277 y=+32=Asin (-)+(-Asin 2(-2-x) T 2π =2Asin T 2L-x V 2 COS 2L- 2π V T 2 <<-A 0 =2Asin となる。 この式において 2Asin T L. cos cos 27 (t-L) 2 (1-x)は振動の位置 x での振幅を表 =(-1)x Asin(ユ ◆ B (2)の結果を直接用いる形の解 法は、彼が原点からx=L で反射して位置まで進む距 離は (2L-x) 固定端にお ける反射で位相がずれるの で、変位は (−1)倍される (位 相が反転する)。 以上より ( のxを (2L-x) にかえて. 変位ys を (-1)倍したもの が yとなる。 t- は時刻に依存した振動を表すので, 波形の進行しない L sin 2x (L-x) cos 2-(1-1) 定在波とわかる。 (5)定在波が最大振幅になるのは COS 2 (t-1)=±1 のときだから y=±2Asin T 2x (L-x) 5 <-%C 固定端は定在波の節節 y= ±2A sin 2x(x) (1)の結果,入=vT と L=2』 を用いると 54 L=±2.Asin2 )= ±2A sin 2x() の最大振幅は2Aである 記の定在波の特徴を用い 図することもできる)。 2A- = 士24sin (12/26) 5 5x 2L 5π =2A cos -x 2L 0 1 5 よって、波形は図a の実線または破線のようになるC -2A セント 75 〈円形波の反射〉 (1) 「反射の際、波の振幅および位相は変わらない反射波は器壁に対して点①と対称な点を波源とする波と同 (2) 反射の際に位相が変わらないので、「2つの波が弱めあう条件』(経路差)=(半波長)×奇数 (3)波源から遠くなると2つの波の経路差は小さくなる。(5)(L上の節の数)=(Oと壁の間にある節の数) (10) ドップラー効果は波源と観測者を結ぶ方向の速度成分によって起こる。 物理重要問題集

未解決 回答数: 1
物理 高校生

五番の回答が2個あるのは後を見すえてでしょうか? また、六番も分かりません

6 加速度運動 5. 方投射と自由落下等加速度直線運動〉 同時に動きだした2つの小球の衝突について考える。 図1、図 2のように、水平方向右向きに。 鉛直方向上向きにy軸をと る。時刻10 で 原点Oから小球Pをx軸の正の向きから角 (0°<8<90°)の向きに、速さ(0) で投げ出す。 ここでは 反時計回りを正とする。 重力加速度の大きさを」として、次の間 いに答えよ。 ただし、小球はxy面内でのみ運動し、空気抵抗は ないものとする。 まず。 図1のように小球を投げ出すと同時に、 小球Qを 標 (a,b)から静かに落下させた。ただし、40b>0 とする。 (1) 投げ出した小Pが小球Qと衝突するまでの時刻におけ る小球Pの座標を求めよ。 (2) 投げ出した小球Pがによらず小球Qと衝突するための tan を求めよ。 次に、 図2のように, 原点を通り軸の正の向きから角 (0°<a<90°傾けた、なめらかな斜面を設置した。 ただし, α は時計回りを正とする。 小球Qを原点Oに置き、 小球Pを投げ出 すと同時に小Qを静かにはなすと, 小球Qは斜面をすべり始め た。 小球 P h 18 a 図1 小球 Q 図2 小球 Q 小球 P 斜面 (3) すべり始めた小球Qが小球Pと衝突するまでの時刻における小球Qの座標を求めよ。 (4) 投げ出した小球Pが、によらず小球Qと衝突するための tan を求めよ。 6. <斜面への斜方投射> 図のように水平と角度 0 (0) をなす斜面上の原点O から、斜面と角度をなす方向に初連量の小 球を投射した。 原点から斜面にそって上向きにx軸を. 斜面から垂直方向上向きにy軸をとる。 斜面はなめらか で十分に長いものとする。 重力加速度の大きさを」とし、 空気抵抗はないものとする。 また、角度0とは <8+α < 21/2の関係を満たすものとする。 〔23 富山県大〕 (4) 小球が斜面と衝突する時刻を求めよ。 (5) 小球が斜面と衝突する点の原点からの距離を求めよ。 (6)距離が最大となる角度αを求めよ。 小球が斜面に対して垂直に衝突した場合について考える。 (7)角度αと8の関係式を求めよ。 (8) 小球が斜面に衝突する直前の速さをを用いて表せ。 7. 〈斜面をのぼる小球の運動> 水平な面(下面)の上に、高さんの 水平な平面(上面)が斜面でなめらか につながっている。 図に示すように x.y.y軸をとり、斜面の角度はx軸方向から見た断面 である。 下面上でy軸の正の向きに 軸とのなす角を0. として、質量 mの小球を速さで走らせた。 な お, 0 <6<90° かつ0 とし、小球は面から飛び上が 力加速度の大きさをgとし、 斜面はなめらかであるとす 次のアイに入る最も適当なものを文末の ウクに入る数式を求めよ。 (1) 斜面をのぼりだした小球は、x軸方向にはア る。 小球が斜面をのぼりきって上面に到達したとき ウy成分の大きさはエ(のぼりきる前 また、斜面をのぼり始めてから上面に到達するまでに 小球の進む方向とy軸とのなす角度を とすると, なる。 (2) 初速度の大きさを一定に保ちながら, 0, 0 さいうちは小球は上面に到達した。 しかし. 8, があ ずに下面にもどってきた。 このときのの満たす 0.0 のとき小球が斜面をのぼり始めてから再 クである。 ア イの選択肢 時刻における小球の位置のx座標, y座標を示せ。 時刻における小球の速度の成分 成分を示せ。 小球を投射した時刻をt=0 とし, 小球が斜面に衝突するまでの運動について考える。 小球にはたらく重力の成分 成分を示せ。 ① 等速度運動 ②加 ③ 加速度 -g cos の等加速度運動 ④ 加 ⑤ 加速度 α- sin 9 の等加速度運動 ⑥ 加 加速度 α- 9 tano この等加速度運動

回答募集中 回答数: 0
物理 高校生

(6)で磁場による力が働いているのにエネルギー保存則が成り立つ理由を教えてください

(4)(ア)から(エ)の全区間でコイルに生したジュール熱の総量を求めよ。また、この総量とコイ ルの速さを一定に保つために作用させた外力との関係を述べよ。 129. 〈斜面上を動く正方形コイルに生じる誘導起電力〉 図のように、水平面となす角度が ⑥ (0x0<)の十分 長い斜面がある。この斜面に、質量がm, 電気抵抗が R, 磁場 B JAC [21 高知大改 A D 1 m.R B M x 0 1辺の長さがdの正方形の1巻きコイル ABCD を置く。 いま、斜面にそって下向きをx軸にとる。斜面上のx≧0 この領域には、面と垂直上向きに磁場があり,その磁束密度 の大きさはxの関数として, B=kx で与えられる。 こ ここでは正の定数である。 コイルの自己インダクタンス, およびコイルと斜面の間の摩擦力はないものとする。 重力加速度の大きさをgとする。 初めに、コイルの辺BCがx軸と平行で,辺AB と辺 CD の位置が,それぞれ, x=0 と x=dになるように置いた。 この状態から, コイルを静かにはなしたところ, コイルは辺 BCがx軸と平行なまま。斜面にそって下向きに動きだした。 辺ABが位置 xにあり,速さで運動している瞬間について,(1)~(6)に答えよ。答えの式 は,m,g, R, k, x, devのうち必要なものを用いて表せ。 (1) 辺ABの両端に生じている誘導起電力の大きさ V」を求めよ。 また, 電位が高いのは端A と端Bのどちらか答えよ。 (2) コイルに生じている誘導起電力の大きさ Vを求めよ。 Xxx dayRoux よって、 E=Bwx OPの電力の大きさV[V] とれるから V-12/Baw まるようになるか OPのである。 P(W) 抵抗で R に流れる電流の大きさ であるから 受ける力の式「F= (4)の向きが②だから、フレ 仕事率(W) は、 (7) Baw Ba 131〈相互誘導〉 2 AR ファラデーの電磁誘導の法則 比較する。 が流れているコイル <コイル」を貫く磁束のは、 SISL N₁ 電流が

回答募集中 回答数: 0
物理 高校生

物理重要問題集2024 大問71番の(3)なのですが、シャルルの法則は、初期状態と状態2で一定ではないのですか。

必解 71. 〈気体の状態変化と熱効率〉 熱機関を利用して上昇, 下降するエレベータの 熱効率を求めよう。 図1のように大気中で鉛直に 立てられている底面積S〔m²〕 の円柱形のシリン ダーに質量 Mo〔kg〕のなめらかに動くピストンが ついており,中に単原子分子理想気体が封じこめ られている。 図1のようにピストンの可動範囲は ho〔m〕からん 〔m〕 までである。 重力加速度の大き さを g〔m/s2] とする。 物体 M [kg] ピストン Mo〔kg]- h [m] ho[m] 初期状態 単原子分子 理想気体 状態 2 図1 初期状態は,気体の温度が外部の温度と同じ To [K], 気体の圧力』が大気圧と同じPo〔Pa〕, ピストンの高さがん。 〔m〕である。まず、ピ ストンの上に質量 M[kg] の物体を乗せ、シリンダー内の気体に熱を与える。 しばらく静止 し続けた後, ピストンが動きだした。 この動きだしたときの状態を状態1とよぶ。 さらに熱し続けるとゆっくりとピストンは上昇し,高さがん 〔m〕 に達した。 このときの状 態を状態2とよぶ。状態2になった瞬間に物体をピストンから降ろすとともに熱を与えるの をやめた。ピストンはしばらく静止し続けたが,やがてゆっくりと下降し,高さがん [m] となったところで静止した。 さらに時間がたつとシリンダー内の気体の温度がT [K] にな ったところで初期状態にもどり、この熱機関はサイクルをなす。 (1)状態1のシリンダー内の気体の温度を求めよ。 [Pa] (2) 初期状態から状態までに気体に与えられた熱量を求めよ。 (3)状態2のシリンダー内の気体の温度を求めよ。 (4) 状態1から状態2までに気体に与えられた熱量を求めよ。 (5) 気体の体積をVとするとき,このサイクルのV図を図2にかけ。 (6) このサイクルで熱機関が外にした仕事を求めよ。 (7) このサイクルの熱効率を求めよ。 0 V[m³] 図2 (8)M=2Mo, Mo= PoS =2h の場合の熱効率の値を求めよ。 [12 弘前大〕

回答募集中 回答数: 0
物理 高校生

⑷でどうしてX軸方向の運動方程式しか成り立たないのか、Y軸方向のことは考えないのかというのと、 どうして重心で考えているのかがよくわかりません

34円運動 万有引力 ◇47. 〈半円形状の面にそった円運動〉 図のように, 半径Rの半円形のなめらかな面を もつ質量Mの台が水平でなめらかな床面上に固 定されている。 半円形の端点Aから質量mの小 A m 0 R 0 物体を静かにはなす。小物体の位置を,小物体とRsing 円の中心を結ぶ線分と水平線 OA がなす角度 0. 0で表す。 また、床面には水平方向右向きにx軸 をとり、半円形の最下点の位置を x=0 とする。 重力加速度の大きさをgとして,次の問いに答え よ。 (1) 小物体が角度0の位置を通過するときの速さ」 を求めよ。 M x 0 (2) このときの小物体が台から受ける垂直抗力の大きさ N と, 台が床面から受ける垂直抗力 の大きさFを,R, M, m, sine, gの中から必要なものを用いて表せ。 また, 横軸に角度 0,縦軸にNとFをとり, Nは実線, Fは破線としてグラフをかけ。 グラフでは, とし、適切な目盛りを振ること。 次に,台の固定を外して小物体をAから静かにはなす。 M = =4 m >+ (3) 小物体が角度の位置を通過するときの速さと,台の速さ Vを,R, M, m, sin 0, X gの中から必要なものを用いて表せ。 このときの小物体の水平方向の位置 x2 と, 半円形の最下点の水平方向の位置 X を R, M, m, cose を用いて表せ。 〔23 電気通信大] 必解 48. 〈ケプラーの法則〉

未解決 回答数: 1
物理 高校生

(3)の運動エネルギーの総和の問題で、なぜ2枚目のように解いてはいけないのですか。A,B,C,D全て同じ速さだと思うのですが...

必解 30. <あらい板上の物体の運動〉 物体 D (2m) 物体A(2m) 物体B(3m) 机 物体 C (m) 図のように, 水平な机の上に直方体の物体Aを置 その上に直方体の物体Bをのせる。 Bには物体 Cが, Aには物体Dが,それぞれ糸でつながれてお り,CとDは, 机の両側にある定滑車を通して鉛直 につり下げられている。 A, B, C, Dの質量は,そ れぞれ, 2m〔kg〕, 3m[kg], m 〔kg〕, 2m [kg] であ る。机とAの間の摩擦はないが, AとBとの間には摩擦力がはたらく。 初めにAとBを手で 固定してすべてを静止させておき, 静かに手をはなして運動のようすを観測する。 運動は紙 面内に限られるものとし, また観測中にBがAから落ちることや, Aが机から落ちることは ないものとする。滑車はなめらかで軽く, 糸は軽くて伸び縮みせず、たるむことはないもの とする。空気抵抗は無視し, 重力加速度の大きさをg 〔m/s'] として次の問いに答えよ。 BはA上をすべらずに,Aといっしょになって机の上を左へ運動する場合について考える。 (1) このときのAの加速度の大きさを求めよ。 (2)このときのAとBの間にはたらく摩擦力の大きさを求めよ。 (3)Dがん 〔m〕だけ落下したときの, A, B, C, D の運動エネルギーの総和を求めよ。 次に,Bは机の上の同じ場所に静止したままで, Aが左に運動する場合を考える。 (4) この場合の, AとBの間の動摩擦係数を求めよ。 (5)Dがんだけ落下したときの, A, B, C,D の運動エネルギーの総和を求めよ。 最後に,Aは左へ運動しBが右へ運動する場合を考える。ただし、このときのAとBの間 の動摩擦係数を1/3として、次の問いに答えよ。

回答募集中 回答数: 0
物理 高校生

重要問題集 物理 71 問題を解く上では必要がないのかもしれませんが、どうしても初期状態でのピストンにかかる力のつり合いが気になります。 自分で立てた式では、 P0S=M0g+P0S となってしまい、M0が0になってしまいます。 そもそも大気圧がかかる面積... 続きを読む

(火) 54 ⑨ 気体分子の運動と状態変化 必解 71. 〈気体の状態変化と熱効率〉 熱機関を利用して上昇, 下降するエレベータの 物体 M [kg] 熱効率を求めよう。 図1のように大気中で鉛直にピストン Mo[kg]- 立てられている底面積 S〔m²〕 の円柱形のシリン ダーに質量 Mo [kg] のなめらかに動くピストンが ついており,中に単原子分子理想気体が封じこめ られている。 図1のようにピストンの可動範囲は ho 〔m〕 からん 〔m〕 までである。 重力加速度の大き さを g[m/s] とする。 初期状態は,気体の温度が外部の温度と同じ h[m] ho〔m〕 初期状態単原子分子 状態 2 理想気体 図 1 To [K], 気体の圧力が大気圧と同じPo [Pa〕, ピストンの高さがん 〔m〕 である。 まずビ ストンの上に質量 M [kg] の物体を乗せ、シリンダー内の気体に熱を与える。 しばらく静止 し続けた後, ピストンが動きだした。 この動きだしたときの状態を状態1とよぶ。 さらに熱し続けるとゆっくりとピストンは上昇し, 高さがん 〔m〕 に達した。 このときの状 態を状態2とよぶ。 状態2になった瞬間に物体をピストンから降ろすとともに熱を与えるの をやめた。ピストンはしばらく静止し続けたが,やがてゆっくりと下降し, 高さがん [m] となったところで静止した。 さらに時間がたつとシリンダー内の気体の温度がT [K] にな ったところで初期状態にもどり,この熱機関はサイクルをなす。 (1)状態1のシリンダー内の気体の温度を求めよ。 (2) 初期状態から状態までに気体に与えられた熱量を求めよ。 [Pa] (3)状態2のシリンダー内の気体の温度を求めよ。 (4)状態1から状態2までに気体に与えられた熱量を求めよ。 (5) 気体の体積をVとするとき,このサイクルのか-V図を図2にかけ。 (6)このサイクルで熱機関が外にした仕事を求めよ。 (7) このサイクルの熱効率を求めよ。 図2 V[m³] (8)M=2Mo, Mo- PoS g h=2h の場合の熱効率の値を求めよ。 [12 弘前大〕 B 応用問題 ◇72. 〈半透膜で仕切られた2種類の気体〉 思考) 図1のようにピストンのついた 2 領域 1

未解決 回答数: 0
物理 高校生

(6)の高温熱源、低温熱源がどうのこうの というのがわかりません。

容器内の気体の圧力 P, 〔Pa] を求めよ。 3) 容器内の気体の温度 T [K] を求めよ。 この変化における容器内の気体の圧力P [Pa〕 と体積V[m²] の関係を表すグラフをかけ。 ただし, P を用いてい 15) この変化で気体が外部にした仕事〔J〕 を求めよ。 (6) この変化で気体が温度調節器から受け取った熱量Q〔J〕を求め 68.〈気体の状態変化と熱効率〉 (6) [A] 理想気体では物質量が同じであれば, 内部エネルギーは温度 で決まる量であり, 圧力や体積が異なっていても温度の等しい状 態の内部エネルギーは同一である。 このことから, 1molの理想 気体に対するか-V図(図1)に示す状態a (温度 T [K]) から状態 b (温度 T'[K]) への内部エネルギーの変化 4Uab 〔J〕 は,定積モ ル比熱Cv 〔J/(mol・K)] を用いて AUab=Cv(T-T) [9] 気体分子の運動と状態変化 51 68 p 0 数研出版 と表すことができる。 (1) 図1に示す状態 a, b とは別の状態 c (状態aと同じ体積をもち,状態bと同じ温度で ある状態)を考えることで ① 式を導け。 1/3 [B] 理想気体1mol の状態を図2のようにA→B→C→Aと変化 させる。 それぞれの状態変化の過程では, A B 外部との間で熱の出入りがないものとする B→C: 圧力を一定に保つ C→A:体積を一定に保つ ように変化させる。 状態 A, B, Cの圧力, 体積, 温度をそれぞれ (p₁ (Pa), V₁ (m³), TA (K)), (P2 (Pa), V₂ [m³), TB (K)), 〔Pa], V1 [m²], Tc 〔K〕) とする。 また, 定積モル比熱をCv 〔J/(mol・K)] 定圧モル比熱 Cp を Cp [J/(mol・K)],比熱比を y = v 気体定数を R [J/ (mol・K)] で表す。 p P₁ P₂ 図 1 0 C 等温線 V₁ 図2 B (2) 過程A→Bで気体が外部からされる仕事 WAB 〔J〕 を ① 式を用いて求め, その答えを Cv. Cp, Ta, TB, Tc の中から適するものを用いて表せ。 (3) 過程B→Cで気体が得る熱量 QBc 〔J〕 と, 過程C→Aで気体が得る熱量 Qca 〔J〕 を Cv, Cp, Ta, TB, Tc の中から適するものを用いて表せ。 V₂ V (4) 過程B→C→Aで,気体が外部からされる仕事 WBCA 〔J〕 を求めよ。 これと前問の答え とをあわせて考えると, 定積モル比熱 Cv, 定圧モル比熱 C, 気体定数Rとの間の関係 式を見出すことができる。 その関係式を導出せよ。 仕事 WBCA は、 Cv, R, Ta, Ts, Te の中から適するものを用いて表せ。 (5) 図2に示すサイクルの熱効率e を, y, pi Y2 を用いて表せ。 Pa' Vi (6) 図2のサイクルを逆向きに,すなわちA→C→B→Aの順に変化させると、 どのような はたらきをする機関となるか。 これが熱力学第二法則に反しないための条件を含めて、 100字以内で述べよ。 [22 岐阜大]

回答募集中 回答数: 0
物理 高校生

重要問題集85の(3)(4)です。 (3)書いてある言葉の意味は分かります。なぜ1がsinθとルートの間に入ったのかがわからないです。 (4)1行目までしか言ってる意味がわからないです。 受験に物理を使わないので基礎知識がだいぶ欠落しています(>_<) 頑張って理解する... 続きを読む

必解 85. 〈光の屈折〉 図は屈折率の異なる2種類の透 明な媒質1 (屈折率 n) と媒質 2 (屈折率n2) からなる円柱状の二 重構造をした光ファイバーの概念 図であり,中心軸を含む断面内を 光線が進むようすを示している。 中心軸に垂直な左側の端面から入射した光線が、 媒質の境界で全反射をくり返しながら反対 側の端面まで到達する条件を調べてみよう。 空気の屈折率は1としてよく, 媒質中での光損 失はないものとする。 また媒質2の内径および外径は一定であり, 光ファイバーはまっすぐ に置かれているとしてよい。 中心軸 L 媒質2 媒質 1 媒質 2 B (1) 左側の端面への光線の入射角を0とするとき COSα を0と」 を用いて表せ。 (2) 光線が光ファイバー内で全反射をくり返して反対側の端面に到達するための sin0 に対 する条件を 1 2 を用いて表せ。 ただし,0°<0<90°とする。 (3)0° <890°のすべての入射角0に対して境界 AB で全反射を起こさせるための条件を nとn2 を用いて表せ。 (4) 光ファイバーの全長をL, 真空中での光の速さをcとするとき (2)の条件を満 左側の端面から反対側の端面に到達す7 土地 ミ

回答募集中 回答数: 0
物理 高校生

(1)で電流がE→C1→R2→C2→Eの向きで流れるのは何故ですか?

94 15 直流回路 必解 115. <コンデンサーを含む直流回路> 抵抗 R1, R2, R3, コンデンサー C1.C2, スイッチ S1, S2 および 電池Eからなる回路がある。 R1, R2, R3 の抵抗値はそれぞれ2Ω, 4Ω 6Ωであり, C1, C2 の電気容量はともに4μF, E は起電力が 12V で内部抵抗が無視できる電池である。 最初 S は開いており S2 は閉じている。 (1) S1 を閉じた瞬間に R2 を流れる電流はいくらか。 (2) S1 を閉じて十分時間がたったとき R2 を流れる電流はいくらか。 (3) (2) のとき, C に蓄えられた電荷はいくらか。 (4) 次に, S と S2 を同時に開き, 十分時間がたった。 そのとき C に加わる電圧はいくらか。 (5) (4) のとき, R1 で発生する熱量はいくらか。 [東京電機大改] C1 S2 R3 S1 R₁ R₂ 必解 116. <電球とダイオードを含む直流回路〉 図1のように,電球, ダイオード, 抵抗値 20Ωの抵抗, および電圧 値を設定できる直流電源からなる回路を考える。 電球は図2のような 電流電圧特性をもつ。 ダイオードは図3で示すように,電圧 1.0V 未 満では電流 0A, 1.0V以上では電流 [A] = 0.20×(電圧 〔V〕 -1.0)の 電流電圧特性をもつ。 次の問いに答えよ。 (1) 電球の電流電圧特性に着目する。 電球の抵抗値は一定ではなく, 電圧や電流の値によっ 抵抗 20Ω 本 て異なる。 電球の抵抗値が26Ωになるときの, 電球に加わる電圧を有効数字2桁で求め よ。 S ダイオード 図1 電球 電源

回答募集中 回答数: 0
1/5