学年

教科

質問の種類

物理 高校生

線を引いたところで飛行機に対して平行な方向へ投げたら相対速度と実際の速度は変わりますか? また最後の問いの時はY軸方向の初速度が50だからずっと50m/sということで合っていますか?

第1問 図1のように、水平な地表面上に軸と y軸を設定する。軸と軸は直交している。飛 行機がy軸の上方490mを速さ50m/sで y 軸正 の向きへ水平に飛んでいる。 この飛行機が xy 座 標の原点 0 の真上 (鉛直上方) を通過した瞬間に 小球を投げ出す場合を考える。 空気抵抗は無視で きるものとし、重力加速度の大きさを 9.8m/s2と して以下の問いに答えよ。 数値については,有効 数字2桁で答えること。 高さ490m 速さ 50m/s 図 1 → 小球を水平方向に投げ出すとする。 飛行機に対する小球の速度をある向きである大きさに したら, 小球が原点0に落下した。 (2) 問1 小球を投げ出す速度 (飛行機からみた速度)の大きさと向きを答えよ。 向きを答える には,どの軸の正負どちら向きかを答えること。 問2 小球が投げ出されてから地表に達するまでにかかる時間を求めよ。 (T) 次は,小球を飛行機に対して速さ4.9m/sでæ軸正の向きに投げ出した場合を考える。 問3 落下地点のæ, y 座標をそれぞれ求めよ。 (31) 今度は,小球を飛行機から見て真下向き (飛行機に対する相対速度が鉛直下向き)に速さ 49m/sで投げ出した場合を考える。 問4 落下地点のæ, y 座標をそれぞれ求めよ。

回答募集中 回答数: 0
物理 高校生

16番 右向きの運動なのに静止摩擦力が右向きに働くのはどうしてですか?Bを中心に考えたらBは左向きの運動をしてるから摩擦は右向きに働くってことですか?

軽いばねとは、ばね自身 SA できるばねのこ とである。 5. _とBの接 接の場合 ... るので ① もりの あいの式 00000000000000000~ かけ できる。 傾きの 度 一般に、 直列接続の場合 +++ を考える。 (2) (3) 重力を斜面方向の成 は常に力がつりあう。 NV-mgcos 6=0 ②より =-g (sin6+pcos 0)[m/s] 2 N 方向下向きを正 F = N 向きとすると, mg in 方程式は mg cose 15.. (1) (s) Bの質量をm[kg], A. Bの加速度の大 きさをα [m/s] とする。 N Bの加速度は重力 mg と張力 Tの合力に よって生じているので、運動方程式は may=mg-Ti よって Ti=m(gla) =2x(10-5)=10(N) WA T Mo A No.L <模擬試験、本試験でよくありがちな設定です> 16. 床の上に物体 A, B が乗っている。 AとBの質量をそれぞれ M, m [kg], 重力加速度の大きさを g 〔m/s2] とす <前問 m 17. 右の B M A 小物体 上に乗 の間の (b) Aの加速度は張力 T によって生じているので Ma、T、よりM-12 (kg) (2) (3) (1) と同様に、Bの運動方程式は (1)の場合、 A を水平方向左向 Na 引いて静止させたときに、 引く力の大きさを T, A. B 間の糸の張力の大きさを To る。 Aと床との間の摩擦は無視できる。 AとBとの間の静止摩擦係数をμ, 動摩擦係数をμ' とする。 AをカF [N] で水平に引く。 の間の mas-mg-T 25t Ti=m\g-as) -2x(10-4)-12(N) とすると, A, Bそれぞれの 力のつりあいより A: T-To=0 T B: T-mg-0 (b) Aの加速度は、張力T と動摩擦力F の 合力によって生じているので (1) F が小さいときは、静止摩擦のため AとBは一体になって運動する。 このときのAの加速度 α, B にはたらく摩擦力を求めよ。 与える。 (1) 小 Mg よって T=mg -2x10=20(N) Max-Tr-F よって FT-Ma=12-2×4=4(N) tmg つまり、引く力の大きさで" はBの重さに等しい。 (c) 水平面がAに及ぼしている垂直抗力の大きさをN [N] とする。 鉛直 方向の力のつりあいより N-Mg = 0 N=Mg=2×10=20 (N) F=Nの式より メード 0.2 (2)Fがある大きさ Fo を越えると, BはAの上ですべるようになるFを求 めよ。 (2) 板 - (3) 小 N (3)引FFより大きいとき, BはAの上ですべりだす。 このときの AおよびBの加速度 αA, B を求めよ。 てす 最 F=ma キニナ すべり出す直前のみ つかこるのが at= F m =Mag Fo=UN 床からの垂直抗力 ∫の 反作用 F-f A. B にはたらく力は図のようになる。 このときBがAの上ですべって いても一体となって運動していても、基本的に力は同じようにはたらい ている(ただしの大きさや静止摩擦力、動摩擦力のちがいはある)。 (1) A. Bは一体として運動 しているので, AとBの加 速度は等しく, ブは止 摩擦力である。 図よ り, A. B それぞれの運動 方程式は A 最大摩擦力ではない NO 反作用 Mg ので、f=μNとしてはいけ ない。 A: Ma=F-fa... ① B:ma=f&B4 ①+②より手を消去すると (M+m)a=F amm (m/s²) この結果を②式に代入すると M+m mF [N] f=mx+m+m (2)F=Fのとき、BはAに対してすべるかどうかの境い目にあるので、 JN (Nは物体Bにはたらく垂直抗力)の関係が成り立つ。 (1)の答え にこのことを代入すると ノmFe=uN=μmg M+m Fo-pl (M+m)g[N] (3)FF のとき, BはAの上をすべる。このときAB間にはたらく摩擦 カノは動摩擦力で B 物体AとBにはたら 力は互いに作用と反作 用の関係なので、 お互いが じ大きさである。このことは BがAの上で一体となってい でもすべっていても成り立つ 関係である。 C 物体Bの鉛直方向の つりあいより N-m=0 よって N=mg juN=pmg とBは別々の加速度 Ch, 4sで運動するので①と② を用いた。 # M =F.μlog Mg M

未解決 回答数: 1
物理 高校生

交流発電機の原理 交流発電機が回転し続けるために加える外力の仕事率が抵抗での消費電力と保存するのは何故なのでしょうか? 誘導起電力は仕事はしないのですか?教えてください。

7/1029 7/29 10 交流発電機の原理 電磁誘導の骨格、出題 次の文中の空欄 ①〜13を埋めよ。 ただし①と⑧はイロのどちらかを その他は数式で記入せよ。文中の物理量は MKSA単位系で表す。 }の中から選び、 交流発電機の原理を考えてみよう。 図のように一様な磁界 (磁束密度B) の中に面積Sの 長方形 abcdの一巻きコイルを置き, 磁界に直交する軸のまわりに一定の角速度で回転さ せる。 コイルを貫く磁束のは周期的に変化する。 コイルがabを上にし,その作る面が磁界の 向きに垂直なときに時刻を0とし,かつこのときに磁界が面abcdを貫いている向きを破 束が正となる面の向きとすれば,=)となる。時間⊿tの間における磁束の変化 とするとき、コイルに生じる誘導起電力は, cd a b向きを電流の正の向きと LT, V=1 )/4t=30 であり、コイルの両端 pq に抵抗Rを接続して回路を形成 すると,図の状態で電流は (イ)ab, (ロb→a} の方向に流れる。 コイルの抵抗が無視でき るとすると、このときの電流I )であり,抵抗で消費される電力Pは,P ) となる。 次に回路を流れる電流が磁界から受ける力とコイルの回転に要する仕事を考えよう。 図の ように磁界の向きを方向, 磁界とコイルの回転軸に垂直な方向を方向, 座標原点を回転 軸にとる。 図の状態で,コイルの一部ab (長さ)が磁界から受ける力の大きさは電流Iを用 いて (ロ)下向き}となる。一方,図のコ であり,その方向は方向を{(イ)上向き, イルの回転からaまでの長さをとし, コイルの一部abの位置をx-y座標で表すと (土,日)=(8), }, またその速度は(フェ, by) = (),( たがってコイルの一部 ab が磁界から受ける力にさからって等速回転するために必要な仕事 )} となる。 し は単位時間あたりP=)となる。コイルの一部cdについても上と同様の議論がで またad, bcで受ける力はのまわりの回転運動を生じさせない。したがってコイル全 体で必要な仕事は単位時間あたり 2P' となり, 式を整理すれば電力Pと一致することがわか る。 N 4 d T a R B b B ◎電磁誘導 B ◎電磁誘導 亜(t) 閉曲線 IV ↓ C ~ ・回路程式 の向きを設定 I -(右手系) → の学 Vem (~ファラデー・ノイマンの法則) PR(t) = Pex(t) エネルギー保存 -46-

回答募集中 回答数: 0
物理 高校生

この問題のイはなぜ⊿yに1/2がついているのですか?等加速度運動の式だとついていないのが正解のように思えます

次の文章を読んで, れの解答欄に記入せよ。 なお, に適した式を問1、問2では,指示に従って解答を で与えられたものと同じ式を表す。た はすでに だし,以下では,弦が受ける重力は無視できるものとする。 必要であれば、以下の関係式を使 ってもよい。 01 のとき sin0≒0≒ tan 0 7 x 関数y=sin(ax+b) の傾きは xの関数 y=cos (ax+b) の傾きは =-asin(ax+b)(a,b: 定数) Ay Ax sin(a+β)+sin(a-β)=2sinacos β, sin (a+β)-sin(α-β)=2cos a sin β T (1) 図1のように,一定の大きさTの力で水平に張られた線密度(単位長さ当たりの質量)p の十分に長い弦を伝わる横波について考える。 図2のように, 微小時間 At の間に,波が 水平方向に微小な長さ x だけ進むとき, 弦を伝わる波の速さvv=ア と表される。 この間に、波の右端付近では, 長さ x の部分(以下ではこの部分をXとする) が波の進行 とともにわずかに持ち上げられる (変位する)。 微小時間 At の間, X は張力のみを受けて, 運動するとみなせる。 X の鉛直方向の運動を初速度 0, 加速度の大きさαの等加速度運動と 近似すると,Xの重心の変位の大きさ 1/24y , Ata のみを用いて, 1/1/24y=イ]と 表される。さらに, 長さ x の部分 X が受ける力の鉛直成分は,張力 T の鉛直成分 Tyの みであるから,運動方程式より,aは,p, Ax および T, を用いてa=ウと表される。 加えて,弦が水平となす角度が十分小さいとき, Ty=x Ayr と書くことができるので,”は To のみを使ってv= エ と表すことができる。 of T Ay Ax V Ty =acos(ax+b)(a,b: 定数) 図1 4x 4y T T

回答募集中 回答数: 0
1/13