学年

教科

質問の種類

物理 高校生

(1)について教えてください。 加速度を求める公式として2枚目の公式を習ったのですが答えは違う公式を使っています。2枚目の公式はいつ使う物ですか🙇‍♀️?

(基本例題 3等加速度直線運動 x軸上を一定の加速度で運動する物体が、 時刻 t=0sに原点Oを正の向きに12.0m/sの速度で 出発した。 その後, 物体はある地点で折り返し、 t=5.0sには負の向きに8.0m/sの速度になった。 (1) 物体の加速度の向きと大きさを求めよ。 t=0s 0 t=5.0s 12.0m/s 8.0m/s (2)物体が折り返す時刻と、このときの物体の位置(x座標) を求めよ。 (3)t=5.0sでの物体の位置(x座標)と,この時刻までに移動した距離を求めよ。 解答 (1) 加速度をα[m/s] とすると,v=vo+αt から, -8.0=12.0+α×5.0 よって, a=-4.0m/s² x軸の) 負の向きに 4.0m/s^ (2) 折り返す地点での速度は0m/sである。 折り返す時刻をt[s] とすると, = v +αt から, 4 [m/s] 12.0 0=12.0+(-4.0)xt よって, t=3.0s S₁ 3.0 5.0 0 このときの位置をx[m] とすると, x=vot+/12/12 から, Sa t(s) -8.0 x=12.0×3.0+ 1/2×(-4.0)×3.02=36-18=18m (3)4=5.0sでの位置をx'[m] とすると, x=vot+ 1/12から 時刻・・・ 3.0 s, 位置…18m x=12.0×5.0+1/2×(-4.0)×5.0°=60-50=10m 10 X 18 (2)の結果から, t=3.0s 以降は負の向きに移動するので、 t=5.0sまでに移動した距離 s 〔m〕は. 別解 右上のtグラフの面積S, 〔m) Sz[m] を用いて, s=Si+Sz=18+8.0=26m x'=S,-S=18-8.0=10m 途中で運動の向きが変わる 場合は、 s=18+ (18-10)=26m 位置・・・10m, 移動した距離...26m (移動した距離) 原点からの変位 運動の式)」を使うか

未解決 回答数: 1
物理 高校生

(1)を図ありで説明して欲しいです🙇‍♂️

2.0m/s 例題 3速度の合成 →8 解説動画 流れの速さが2.0m/sのまっすぐな川がある。 この川を,静水上を4.0m/sの速さで進む船 川を直角に横切りながら、 対岸まで進む。 このとき, 川の流れの方向をx方向, 対岸へ向かう 方向を方向とする。 (1) 静水上における, 船の速度のx成分を求めよ。 (2) 静水上における, 船の速度の成分を求めよ。 第1章 ◆(3) へさきを向けるべき図の角8の値を求めよ。 脂指針 川の流れの速度と船 (静水上)の速度の合成速度の向きが, 川の流れと垂直になる。 解答 (1) 船が川を直角に横切るとき, 船の速度のx成 分と, 川の流れの速度は打ち消しあっている。 よって 船の速度の成分は (2) 船が川の流れに対して直角に進 むので、 右図のように,船 (静水 上)の速度と川の流れの速度の 合成速度が、川の流れと垂直に なる ここで, PQR は辺の比 が1:2:√3 の直角三角形であ る。 2.0m/s ① QR へ60° 4.0m/s 09 1 P2.0m/s よって PR=2.0√3≒3.5 ゆえに、船の速度のy成分は 3.5m/s 別解 三平方の定理より PR=√4.0°-2.02=√12=2√3 3.5 (3)(2)より0=60° [注] 川を横切る船はへさきの向きとは異なる向きに進 む。 [注 √31.732・・・ や, √2 1414・・・ などの値は覚え ておこう。 演の

回答募集中 回答数: 0
物理 高校生

(2)がわかりません。 式の2分の1はどこからきてるんでしょうか??

基本例題25 平面上での合体 図のように、なめらかな水平面上で,東向きに速さ2.0 m/sで進んできた質量 60kgの物体Aと、北向きに速さ 3.0 m/sで進んできた質量40kgの物体Bが衝突し, 両者は一体 A となって進んだ。 次の各問に答えよ。 (1) 衝突後,一体となった物体の速度を求めよ。 (2) 衝突によって失われた力学的エネルギーを求めよ。 指針 (1) 運動量保存の法則から, 東西 南北の各方向において, A, B の運動量の成分 の和は保存される。 (2)衝突前後の力学的 エネルギーの差を求める。 ■解説 (1) 東向きにx軸,北向きにy軸 をとり,衝突後,一体となった物体の速度成分 をそれぞれひx, vy とする。 各方向の運動量の 成分の和は保存されるので, A y 2.0m/s Vy__V AG 60kg Vx ------ 分 基本問題 188, 194, 200 2.0m/s 60kg B ↑北 C81 東 3.0m/s 087 40kg x成分:60×2.0=(60+40) Xvxvx=1.2m/s 成分:40×3.0=(60+40) Xuyvy=1.2m/s x=vy から、速度の向きは北東向きである。 体となった物体の速度は, 三平方の定理から、 =√1.22 +1.2=1.22=1.2×1.4180 北東向きに 1.7m/s =1.69m/s (2)衝突前のA,Bの運動エネルギーの和は、 1 2 ×60×2.02+= ×40×3.02=300J 2 20.000 衝突後のA,Bの運動エネルギーの和は, AB-X(60+40)×(1.2√2)²=144J 2 位置エネルギーは, 衝突の前後で変化しない。 したがって、失われた力学的エネルギーは, 3.0m/s B 40kg | 300-144=156J 1.6×102J

未解決 回答数: 1
1/19