物理
高校生

(2)がわかりません。
式の2分の1はどこからきてるんでしょうか??

基本例題25 平面上での合体 図のように、なめらかな水平面上で,東向きに速さ2.0 m/sで進んできた質量 60kgの物体Aと、北向きに速さ 3.0 m/sで進んできた質量40kgの物体Bが衝突し, 両者は一体 A となって進んだ。 次の各問に答えよ。 (1) 衝突後,一体となった物体の速度を求めよ。 (2) 衝突によって失われた力学的エネルギーを求めよ。 指針 (1) 運動量保存の法則から, 東西 南北の各方向において, A, B の運動量の成分 の和は保存される。 (2)衝突前後の力学的 エネルギーの差を求める。 ■解説 (1) 東向きにx軸,北向きにy軸 をとり,衝突後,一体となった物体の速度成分 をそれぞれひx, vy とする。 各方向の運動量の 成分の和は保存されるので, A y 2.0m/s Vy__V AG 60kg Vx ------ 分 基本問題 188, 194, 200 2.0m/s 60kg B ↑北 C81 東 3.0m/s 087 40kg x成分:60×2.0=(60+40) Xvxvx=1.2m/s 成分:40×3.0=(60+40) Xuyvy=1.2m/s x=vy から、速度の向きは北東向きである。 体となった物体の速度は, 三平方の定理から、 =√1.22 +1.2=1.22=1.2×1.4180 北東向きに 1.7m/s =1.69m/s (2)衝突前のA,Bの運動エネルギーの和は、 1 2 ×60×2.02+= ×40×3.02=300J 2 20.000 衝突後のA,Bの運動エネルギーの和は, AB-X(60+40)×(1.2√2)²=144J 2 位置エネルギーは, 衝突の前後で変化しない。 したがって、失われた力学的エネルギーは, 3.0m/s B 40kg | 300-144=156J 1.6×102J

回答

疑問は解決しましたか?