学年

教科

質問の種類

物理 高校生

Ⅱの(4)をsin cos関数を使って解いたのですが答えが合いませんでした。どこが間違っているのかと正しい解法を教えて頂きたいです。お手数お掛けしますが宜しくお願い致します。

1/25 4/29 pooooooo 33 単振動 ばね定数のばねを鉛直に立て,上端に質量 M の板を取り付け、静止させる。そして,質量mの 小球をこの板の上方んの高さから静かに落下させ る。 重力加速度をg とする。 I. 物体が板と弾性衝突をする場合について (1) 衝突により小球がはね上がるためには,m とMの間にどのような関係が必要か。 33 単振動 99 mmmmm M (2) 衝突後,板ははじめの位置より最大どれだけ下がるか。衝突は 1度だけとする。 II. 小球が粘土のようなもので,衝突後, 板と一体となって運動する 場合について, (3)衝突の際,失われる力学的エネルギーはどれだけか。 (4) 板ははじめの位置より最大どれだけ下がるか。 (東工大) Level (1) (2),(3)★ (4) ★★ Point & Hint TS (1) (3) とくに断りがなければ, 衝突は瞬間的なものと考える。 その場合、重力の 力積は無視でき, 衝突の直前, 直後に対して運動量保存則を用いてよい。 弾性衝 突では全運動エネルギーが保存されるが, 反発係数 (はね返り係数) e=1 として 扱ったほうが計算しやすい。 (2), (4) ばね振り子のエネルギー保存則には,次の2通りの方法がある。 A: 1/12mu2+1/21kx2=定 (xは振動中心からの距離) 単振動の位置エネルギー B: 1/12mo+mgh+1/21kx定(xは自然長からの距離) 弾性エネルギー 12/23kx2 のもつ意味の違いと、xの測り方の違いを押さえておくこと。多くの場 合, A方式の方が計算しやすいが,(4)では注意が必要。

回答募集中 回答数: 0
物理 高校生

(3)で最終的に言いたいことは、θ=θ0だからθで入射して屈折することなく直進した先にm=0のときの明線ができるってことですか? あと、問題にはなっていませんが、ガラスと空気中では屈折率が異なるのにλは変化しないんでしょうか?(媒質が変わらないから変化しないのかなと思ったん... 続きを読む

353折格子 回折格 回折格子に平面波の光を当てると, 子の後方に置かれたスクリーン上に干渉縞が現れる。 じま 回折格子 の断面 00 スリット間隔 (格子定数) dの回折格子に, 波長の平面波の光 を当てたとき,明線の方向が回折格子の法線となす角を0とする。 (1)入射光を回折格子に垂直に当てたとき, sin を入, d および 整数を用いて表せ。 00- 2 図1のように入射光の方向を角度 6。 だけ傾けて回折格子に当 てたとき、回折前後の波面を考え, 隣りあうスリットを通過す」 図1 る光の経路差を求めることにより, sin0を0,入, d, および整数mを用いて表せ。 (2)において、入射光の進行方向と=0の明線ができる方向とのなす角を求めよ。 40=30°= 0.4d のとき, 明線の方向として最も適当なものを図2の(ア)~(カ)の中か ら1つ選べ。 図2 回折格子 * の法線 明線の * 入射光 方向 (ア) (イ) (ウ) (エ) (オ) (力) [兵庫県大 改] -347 物

回答募集中 回答数: 0
物理 高校生

1番最後の問題は相対速度でも解けるんですか? 等速直線運動じゃないと相対速度は使えないとかありますか?

10 (1) Bは左向きに Bの μmgを受ける。 とすると、 運動方程式は μmg B ときの運動方程式を記せ。 a=-μg A ma= -μmg (3) しばらくして、等速度運動になった場合 の速さを求めよ。 2 1 公式よりv=v+at=vo-ngt... ① (2)Aは動摩擦力の反作用を右向きに受ける (赤矢印)。 AA とすると, Aの運動方程式は M=2.0[kg].0=30° のとき、 図2の曲線 のような実験結果が得られた。 なお、 図2の 斜めの点線は、時間t=0 のときの接線としg=10(m/s) とする。 (4) 動摩擦係数を求めよ。 (5) 空気の抵抗力の係数を求めよ。 (岐阜大 + 東京大) 012345 t[s] 図2 ③ やり に対 MAμmg ...② . A=umg M ②左辺 (M+m)A したがって, A の速度Vは V=At = μm gt 「してはいけ M (3)v=Vより vv-μgto=Hmg Moo Egto ∴. to= M μm+M)g 19 m (4)V=Atom+M Vo 3- を求めてもよい (5) Aに対するBの相対加速度は a=a-A=-m+M Vの方が計算しやす μg M A上の人が見れば の単純な運動。ただし、 てはその人が見た値で。 Aに対しては、 Bは初めでやってきて 加速度αで運動し、やがて止まる。 したがって Mul OF-²-201 1= 2 (m+M)g 別解 固定台に対する運動を調べてもよい。 x x = Vo x=voto+mato2 X x-A 右図より Ix-X として求められるが, 本解の方 X が計算が速く、 応用範囲も広い。 B vo S₁ S3 A S2 なめらかな水平面S, S. と鉛直面 S3 からなる段差のある固定台がある。 面 S2 上に, 質量Mの直方体AをS, に接す るように置く。 Aの上面はあらく その高 さは面Sの高さに等しい。 質量mの小物 体BとAの間の動摩擦係数をとし、重力加速度をgとする。 いま B を初速で水平面 S, 上から, Aの上面中央を直進させたところ, A は運動をはじめ,ある時刻 t 以後, 両物体の速さは等しくなった。 BがA上に達した時刻をt=0とする。 時刻to より以前の時刻におけ るBの速さは (1) で, A の速さは (2) である。 toは (3) で、 そのときの速さは (4) である。 また, BがA上を進んだ距離は (5) である。 (岡山大 ) する

回答募集中 回答数: 0
物理 高校生

(6)で磁場による力が働いているのにエネルギー保存則が成り立つ理由を教えてください

(4)(ア)から(エ)の全区間でコイルに生したジュール熱の総量を求めよ。また、この総量とコイ ルの速さを一定に保つために作用させた外力との関係を述べよ。 129. 〈斜面上を動く正方形コイルに生じる誘導起電力〉 図のように、水平面となす角度が ⑥ (0x0<)の十分 長い斜面がある。この斜面に、質量がm, 電気抵抗が R, 磁場 B JAC [21 高知大改 A D 1 m.R B M x 0 1辺の長さがdの正方形の1巻きコイル ABCD を置く。 いま、斜面にそって下向きをx軸にとる。斜面上のx≧0 この領域には、面と垂直上向きに磁場があり,その磁束密度 の大きさはxの関数として, B=kx で与えられる。 こ ここでは正の定数である。 コイルの自己インダクタンス, およびコイルと斜面の間の摩擦力はないものとする。 重力加速度の大きさをgとする。 初めに、コイルの辺BCがx軸と平行で,辺AB と辺 CD の位置が,それぞれ, x=0 と x=dになるように置いた。 この状態から, コイルを静かにはなしたところ, コイルは辺 BCがx軸と平行なまま。斜面にそって下向きに動きだした。 辺ABが位置 xにあり,速さで運動している瞬間について,(1)~(6)に答えよ。答えの式 は,m,g, R, k, x, devのうち必要なものを用いて表せ。 (1) 辺ABの両端に生じている誘導起電力の大きさ V」を求めよ。 また, 電位が高いのは端A と端Bのどちらか答えよ。 (2) コイルに生じている誘導起電力の大きさ Vを求めよ。 Xxx dayRoux よって、 E=Bwx OPの電力の大きさV[V] とれるから V-12/Baw まるようになるか OPのである。 P(W) 抵抗で R に流れる電流の大きさ であるから 受ける力の式「F= (4)の向きが②だから、フレ 仕事率(W) は、 (7) Baw Ba 131〈相互誘導〉 2 AR ファラデーの電磁誘導の法則 比較する。 が流れているコイル <コイル」を貫く磁束のは、 SISL N₁ 電流が

回答募集中 回答数: 0
1/50