学年

教科

質問の種類

物理 高校生

物理のエッセンスからです。 3枚目の下にある①、②より、Tの式が書かれてますが、この式は①②の式をまとめればこの式になるのでしょうか? そうであるならどういうふうにまとめれば良いか教えて頂きたいです。

量mのPが水 平に円運動をしている。 Pの底からの高さはんである。 面の垂直抗力 N,Pの速さv, 周期Tを求めよ。 93* 滑らかな水平床上を長さの糸に結ばれて角速度 ので円運動する質量mの小球Pがある。糸の端は 高さんの点0に固定されている。糸の張力Sと床 からの垂直抗力 N を求めよ。 ω がある値 ω をこえ るとPは床から離れる。 ω を求めよ。 面から離れる 垂直抗力= 0 ・R→ P 鉛直面内の円運動 糸におもりを付けて鉛直面内で回したり,円筒面を滑り動く小球の運動な どは円運動であっても, 等速ではない (上へ上がるほど位置エネルギーに食 われてスピードが遅くなる)だけに扱いが難しい 鉛直面内の円運動を解く 1 力学的エネルギー保存則 2 遠心力を考えて,半径方向で 糸 T 4 v 解説〕 力のつり合い式をつくる。 Vo +1 mg 遠心力 図1のように長さの糸で結ばれたおもりを最下点から初速v で回す。角日 をなしたときの速さをv, 糸の張力を とすると,より 1212mv=1/2mu2+mgr(1-cos 0) mgr -mgrcoso

解決済み 回答数: 1
物理 高校生

I Pの運動方程式の摩擦力がなぜμ(M+m)gではな    μmgになるのか分かりません  物体Pの垂直抗力は(M+m)gではないんですか

7 思考・判断 滑らかな水平面上に質量Mの物体Pを置き, その上に質量mの 小物体Qを載せて静止させておく。 PとQの間の静止摩擦係数 をμとし,重力加速度の大きさを」とする。 以下,AさんとBさんの会 話の空欄①~⑥には語群から適語を選び(同じ言葉を何度使用し ても良い) ア~オの記号で答えよ。 (I) ~ (VⅡI) には適当な式を入れ 。 物体 P M - (問題は以上) - a. (M+m)=F 1-2 理数基礎物理 No.2 小物体Q M'mgl Q m M. Mg 図 7-1 F-=-₂ A: 図 7-1 のように, Pに糸をつけて水平に引っ張るときと, 図 7-2 のように Q に糸をつけて引っ張るときとで, P, Qに はたらく水平方向の摩擦力の向きに違いはあるのかな? B:どちらの場合も,PとQの間に摩擦がない場合を考えたらわかりやすいんじゃないかな。 図 7-1 の場合, 摩擦がなければPだけが右向きに運動し、(⑩)によりQはその場に静止し続けるよね。摩擦力は運動を 妨げる向きにはたらくから,Pにはたらく摩擦力の向きは,Pの運動を妨げる向き、つまり(②)になるね。 そうすると,Qにはたらく摩擦力の向きは(③)によって(④)になるよ。 P mmmmmmmmmm 図 7-2 az A: 7-2 の場合も同様に考えると,Qにはたらく摩擦力の向きは (⑤)で、Pにはたらく摩擦力の向きは (⑥)ということになるね。ア B: 図 7-1 も図 7-2 も引く力を大きくしていくと, QPの上をすべり始めるときがくると思うけど, その時の 力の大きさは同じなのか,違うのか知りたいね。 A:じゃあ、考えてみようよ。 滑り始めだから摩擦力は最大摩擦力で, ぎりぎりPもQ も同じ加速度だと考えて いいよね。 図7-1 の時の引く力の大きさを F1, 加速度の大きさをa1として,図7-2の時の引く力の大きさを F2, 加速度の大きさをaとし,右向きを正としてそれぞれの運動方程式をたてると 図 7-1 のとき: Pの運動方程式(I) Qの運動方程式(Ⅱ) 図 7-2 のとき: Pの運動方程式(Ⅱ) Qの運動方程式(IV) これらから, F1=(V), F2 = (VI)となるよ。 (※M,m,μ, gを用いて答えること。) B:そっかぁ。 じゃあ、F1=(VⅡI) XF2 という関係になるんだね 【語群 】 ア:水平右向き イ:水平左向き ウ慣性の法則 エ: 運動の法則 オ作用・反作用の法則 FI a.(m+m)=a²1mm

解決済み 回答数: 1
物理 高校生

解答がないので答え合わせを頼みたいです 読みにくいですが解放もあっているか確認して頂だけると嬉しいです よろしくお願いします

V/VII。 229.滑車と単振動闘 なめらかに回転する軽い定滑車に,軽い糸 をかけ, 一端に質量mの小球P, 他端に質量 M(M>m)のおもり Qをつり下げた。次に, Pと床の間を, ばね定数たの軽いばねで 鉛直方向につなぎ, P, Qをつりあいの位置で静止させた。ばね が自然の長さになるときのPの位置を原点(x=0)として, 船直上 向きにx軸をとる。また, 重力加速度の大きさをgとする。 (1) P, Qが静止しているときの, Pの位置を求めよ。 (1)の状態からPを引き下げて静かにはなすと, Pは, 糸がピン と張った状態を保って単振動をした。 (2) Pが位置xにあるときのPの加速度をa, 糸の張力の大きさをTとし, P, Qのそ れぞれの運動方程式を示せ。ただし, Pは鉛直上向き, Qは鉛直下向きを正とする。 (3) Pの単振動の角振動数を求めよ。 (4) 糸がたるまないためには, Pをはなす位置がいくらよりも上であればよいか。 P 0+ M (立命館大 改) 時例題20 (3)a=-wX Matma: (m-M)4 a- (m-M)x 1 Mg = mgt KX 14)a- Fuz k kk: M&-m2 M4-mg k m+M Mu= Mg-T M():M4-T T-Ma- M()3o たゆまない1。 tkを(は(mtM) トミ (mtm) Lo-ト3X。- IM-m)2 mt M (21 P- Ttma: k かリーカ以 (m-M)¢ (M-m)g k ミ- w- ト my- Mg (m-M)g Ttma= (m-M)4 mtM (m-M)は k m+M (M-m)4 yo w k (mtM) a. Ma= T。 (m+M)4 mtM K K K 2Mg K W- ntM 2mg k

解決済み 回答数: 1
1/2