学年

教科

質問の種類

物理 高校生

高校物理電流と磁場の質問です 磁場の向きを考える時で右ねじの法則を使う時、HaベクトルとPAがなす角は90°と決まっているのですか?鉛筆で書いたような、HaベクトルとHbベクトルがなす角が60°にはならないのですか?

267 直線電流がつくる磁場の合成 十分に長い2本の導線 A,Bを2d [m] 離して平行に張る。 図のように,Aには紙面の 裏から表の向きにI [A] の電流を,Bには表から裏の向きに I [A] の電流を流した。図中の点Pでの磁場の強さ H [A/m] を 求めよ。 P 60° 例題 55 \60 60° 2d 267 B8 十分長い直線電流I〔A〕 が距離[m] の点につくる磁場は、 電流の向きに右ねじが進むようにねじ を回す向きで,その強さは H= [Am] となる。 磁場はベクトルであるから、点Pでの磁場は各 ここがポイント 2πr [VIT 直線電流がつくる磁場を合成して求める。 導線Aと導線Bが点Pにつくる磁場とは 右図のようになる。 導線Aと導線Bに流れる電流 はどちらも「[A] で, AP-BP=2d[m] である から、点Pにつくる磁場の強さは直線電流がつく る磁場の式 「H=- H HA HB 30° 30° より 2πr 60 I I HA=Hn= = [A/m] 2×2d And 点での磁場は,Hと77日を合成した磁場で -2d- B に平行な方向の成分は同じ大きさで逆向きなので打ち消しあい, 合成磁場 の向きは線分ABに垂直上向きになる。 H』とπの線分AB に垂直な 方向の成分は Dを Hasin30°=Hasin30°=ax/[A/m]5 であるから, 点Pでの磁場の強さは 1 別解 下図のように、 磁場 と君がな す角は60°である。 Hは豆 とTBを2辺とする平行四辺 形の対角線なので ∠PRQ=60° となり, △PQR は正三角形である。 ゆえに H=H= -[A/m] 4nd R 60H 60° 60° 060° #ダイ I 1 I H=2x = 4rd 2 And [A/m] (1+1)×0.0+0 HA H B P S

未解決 回答数: 0
物理 高校生

水の電気分解で水素と酸素の割合が2:1で電極にくっつくのは分かるのですが、この問題でどうやって陰極と陽極を区別しているのかがよくわかりません… よろしくお願いします🙇‍♂️。

N がら出題の ように配慮 くって に適する数値を答えよ。 [ ] カ 陰極 失って 陽極 失って ガイド 陽極では2C1Cl2 + 2e - 陰極では Cu2+ + 2e → Cu 解答に得 多数掲載 「標準問題 とめた「 重要 005 [水の電気分解、 気体の量、燃料電池] TIL 問題」には 右図は電気分解の装置である。 この装置では電極をそれぞれ試試験管A 験管A および B で囲み, 発生する気体を集める。 電極は陽極側, 試験管 B 答の方針」 い問題に 陰極側ともに白金めっきをほどこしたチタン電極を使用してい えて解ける る。発生した気体は電極と反応せず、水溶液に溶けないものと する。 次の問いに答えなさい。 徹底的 別冊解 各問題を くわしい 電源装置を接続し電流を流すと, 水の電気分解が起こった。 (1) 試験管Aと試験管Bに集まる気体の体積比はどれか。 ア~うすい水酸化ナトリウム水溶液 オから選べ。 ooo ooo ooo000 ° 0 0 0 0 0 0 0 0 0 1 電極 0000000000 入試 ア 3:1 イ2:11:1 エ 1:2 アップ」 (2) 試験管Aに集まる気体はどれか。 ア~オから選べ。 オ 1:3 Fb Dr ア 酸素 イ 水蒸気 ウ 水素 エナトリウム オ二酸化炭素 電気分解により試験管AおよびBの中に気体が十分にたまってから、電源装置をはずして 代わりに電子オルゴールをつないだら, 電子オルゴールが鳴った。 (3) このとき起こった化学変化を化学反応式で書け。 (4) 次の文の① [ do I T ②に入る最も適当な語を, ア~カからそれぞれ選べ。 (3)では,装置の中で ① ■エネルギーから② エネルギーへの変換が起こって

解決済み 回答数: 1
物理 高校生

(1)では遠心力を考慮していないですが、遠心力を考慮する時は[遠心力を考慮し]と記載されますか? また、⑵のつり合いの式の両辺にmがついてますが打ち消さなくていいんですか?

<問8-4 角速度で回転する円板に、支柱を取りつける。 質量mのおもりに糸をつけ 柱の頂点に結びつけたところ, 支柱と糸は角度をなして静止した。おもりと回転 の中心の距離をとし、以下の問いに答えよ。 ただし重力加速度の大きさを とする。 (1) 糸の張力の大きさを,m,g,eを使って表せ。 (2) 遠心力を考慮し, 物体にはたらく水平方向の力のつり合いの式を立てよ。 (3) おもりの円運動の運動方程式を立てよ。 さて,遠心力の考えかたを身につけるべく問題を解いていきましょう。 (2),(3)が大事な問題ですから,しっかり理解してくださいね。 <解きかた (1) mg.8で表すので,鉛直方向に注目しましょう。 糸の張力の大きさをSとおくとおもりにはたらく鉛直方向の力のつり 合いより Scos0=mg S= mg cose (2) 「遠心力を考慮し」とあるので、 おもりに観測者を乗せて考えます。 観測者は円運動することになるので, 回転の中心に向かって加速度 a=rw2で運動しているということです。 観測者からすると, おもりには慣性力ma=mrw²が回転の外向きにはた らいて見えます。 また、おもりには糸の張力がはたらくので、力のつり合いより Ssin0=mrw2 (1)の結果より Ssin0=mg sin0 Emgtane cose よってmgtand=mrw答 (3) おもりにはたらく向心力はSsin0で、角速度 w半径1の円運動をするので Ssin0=mr2 mgtan0= mrw2 ・・・答 (2)と(3)を比べると同じ式になりましたね。 遠心力は円運動の慣性力です。 しっくりこない人はChapter7 を復習して、理解を深めておきましょう。 問8-4 円板が m 回るんだね 8 08 W → (1)鉛直方向の力のつり合いを考えて Scoso=mg S= mg COS Omr Ssin 0 20 mrw おもりの上に観測者を乗せて 考えると,F=mrw の遠心力 を上図のように受けるので 力のつり合いより Ssin0=mrw2 W mg cos0 mgtan 6=mrw どちらも結果の式は 同じだが,考えかたが 違うんじゃ (3) 0 Scos 0 Img S sin a=rw² おもりは回転の中心に向心力 Ssin を受ける。 円運動の 運動方程式より Ssin=mrw² wwww ww ma F mg tan 0=mrw² (合 ここまでやったら 別冊 P. 40~

回答募集中 回答数: 0
1/46