学年

教科

質問の種類

物理 高校生

(2)でなぜ「-1」をする必要があるかわかりません

図のSは任意の波長入の単色平行光線をとり 出せる光源,Hは光の半分を通し残り半分を反射 する厚さの無視できる半透明鏡, M1,M2 は光線 に垂直に置かれた平面鏡である。 Sから出た光は Hで2つの光線に分かれる。ひとつはHを透過 し M1 で反射したあと, Hで反射し光検出器Dに 達する。他方はHで反射したあと, M2 で再び反 射してから,Hを透過しDに達する。 Dではこの 2光線の干渉が観測される。 装置は真空中に置か れているとして、 以下の問いに答えよ。 S O H M25 (1) M1,M2 が図の位置のとき, 光源からDに達する2光線の間には光路差 (光学距離の差) はなく, 2光線が強め合っている。 この位置から M2 を鉛 直下方に距離だけ平行移動すると,やはり強め合うのが観測された。 を波長入および整数で表せ。 (2)図の位置からM2 を一定の重力の中で自由落下させ, Dで光の強め合い を検出した。落下し始めた瞬間の強め合いを1回目とし、時間後にN 回目の強め合いが検出された。 重力加速度g を入, t, N で表せ。 なお、落 下中 M2 の面は傾かない。 (3) M2 を図の位置 (10) に戻して, Hと M1 の間に屈折率 n=1.5, 厚さ d=2.5×10 〔m〕 の薄膜を入れたとき, 波長 入1 = 0.50×10[m]で強め 合っていた。ここで,光源Sの波長をゆっくりと増やしていくとDの干渉 光は一度弱くなるが,ある波長 入になると再び強め合う状態になった。 波長が変わっても屈折率は変化しないとして,入2 を求めよ。 (千葉大)

解決済み 回答数: 1
物理 高校生

・(4)の二枚目の写真のオレンジの波線で引いてあるところで⊿Rがたされるのは問題文の⊿R/R=k•⊿L/Lの条件があるからですか? ・(5)で二枚目の写真の「流れる電流が抵抗値に反比例する。よって電流の大きさはR/R倍になる」のところがなぜそうなるのか分かりません。 ・(6... 続きを読む

設問(4) 図3のように、可変抵抗 Y, 抵抗値が の抵抗 Ri.抵抗値が 5 r の抵抗 R2 電 圧計 ① そして電池を用いた回路に抵抗体Xを組み込む。 抵抗体 X が変形す る前の状態 (長さL, 抵抗値R)では,可変抵抗Yの抵抗値が のとき,電圧計 ①の指示値が0であった。抵抗体Xの長さをだけ伸ばしたときは、可愛 抵抗 Yの抵抗値を ⊿r だけ増加させたときに電圧計の指示値が0になった。 抵抗体Xの伸びAL と抵抗値の増加 4R との間にはんを定数として ARov AR AL =k- の関係が成立するものとして, 4L を R. Ark, L を用いて表せ。 R L 設問(6) 図3における抵抗体 Xと可変抵抗Yを抵抗R』 と抵抗R, に取り換え,電流計 A を接続して図4の回路を組んだ。 このとき, 電流計 A の指示値は 0.15A で、電圧計の指示値は30V (点a に対する点bの電位)であった。 抵抗 R1 の抵抗値は400Ω で, 抵抗 R』 の抵抗値は2600Ω, 抵抗 R2 と抵抗 R の抵抗値 は共に1000Ωである。 電圧計 の内部抵抗を1000Ωとして,この回路の点 cd 間の電位差を求めよ。 (x) R₁ r 図3 b a R2 d 価 設問 (5) 設問 (4)において, 点cd間の電圧は変化しないものとする。 電圧計の指示値 が0になるとき, 抵抗体 Xに流れている電流の大きさは,抵抗体が変形する前 と比べて変形した後では何倍になっているか。 また, 抵抗体 X における消費電 力は,抵抗体が変形する前と比べて変形した後では何倍になっているか。 変形 する前の抵抗体 X の抵抗値を R, 変形後の抵抗値をR' とし,それぞれをRと R' を用いて表せ。 0.15 c. 2600 Ra ⑩30V 全1000 d R₁ 40% h 図 4 R₂ 1000 f

解決済み 回答数: 2
物理 高校生

(3)の三枚目の写真のR’-Rの式がよく分かりません

At t であ 物理 問題Ⅱ 図1のような長さL. 断面積 S, 抵抗値Rの抵抗体 X を考える。この抵抗体Xの左 右の端に大きさVの電圧をかけたとき、抵抗体Xの内部には一様な電場(電界) が生じ るものとする。 自由電子は電場から力を受けて一定の加速度で運動し、抵抗体X内の イオンなどと衝突し、 いったん静止する。 この衝突が一定の時間間隔で繰り返し起こ ると仮定すると、 自由電子の速さは時刻に対して図2のように変化する。 自由電子1個 の質量を電気量e (e>0) 抵抗体Xの単位体積に含まれる自由電子の個数を とする。 S 抵抗体 X 図 1 L 設問(1) 以下の文章が正しい記述になるように, (あ~か)に入る適切な数式をL.S.V. em,n, Tのうち必要なものを用いて表せ。 ( 抵抗体 Xの内部に生じる電場の強さは の大きさは (あ) なので,自由電子の加速度 であり自由電子の平均の速さは (う) 一方、この抵抗体Xの断面を時間の間に通過する自由電子の数は xv4t なので、この抵抗体 X を流れる電流の大きさは したがって, 抵抗体 X の抵抗率は (カ) となる。 である。 (え) (お) xvとなる。 この抵抗体 X に力を加えると,長さはL+4L (4L>0) になり, 断面積はS-AS (4S>0) になった。 この変形において、抵抗体 X の抵抗率は変化しないものとする。 ただし, LAL, S4Sとし, 1>|x|のとき (1+x)=1+pxの近似式を用い,また,微 小量どうしの積を無視するものとする。 設問(2) 抵抗体 X の長さがL+4L, 断面積がS-4Sのときの抵抗値R' を R, L, 4L, S, 4S を用いて表せ。 設問(3) 力が加わり変形しても抵抗体 X の体積が変化しないものとして, R'-R を R, L, 4L を用いて表せ。 速さ ・時刻 T 2T 3T 図2

解決済み 回答数: 2
1/7