学年

教科

質問の種類

物理 高校生

(3)で、なぜABの中央の点が腹になるのか分かりません。詳しく教えていただきたいです。

基本例題46 波の干渉 物理」 水面上の6.0cmはなれた2点A,Bから,同位相で 振幅が等しく, 波長 2.0cmの波が出ている。 図の実 線はある瞬間の山の位置, 破線は谷の位置を表してい る。 波の振幅は減衰しないものとする。 ① 2つの波が弱めあう点を連ねた線(節線)をすべ て図中に描け。また, 節線は全部で何本あるか。 指針 (1) 弱めあう場所は, 実線(山) と 破線(谷)が重なる点であり, 節線はそれらを連 ねたものとなる。 (2) 点Pはどのような振動状態にあるか。 AP= 8.0 cm, BP=5.0cm とする。 (3) 節線が線分 AB と交わる点は,Aから測ってそれぞれ何cmのところか。 (2) APとBPの距離の差が, 半波長の偶数倍で あれば強めあい、奇数倍であれば弱めあう。 (3) 線分AB上では、互いに逆向きに進む波が 重なりあい, 定常波ができ ている。 解説 (1) 節線は, 山と谷が重な る点を連ねた 線であり,図 P. 14.波の性質 171 基本問題 348, 349 のようになる。 節線の数は6本である。 (2) AP-BP=3.0cmであり, 半波長1.0cm の 3倍(奇数倍) である。 したがって, P あうため、振動しない。 (3) 線分AB上には定常波ができており, 節線 は AB上の定常波の節を通る。 ABの中央の点 は腹であり,腹と節の間隔は波長の1/4 (0.5 cm), 節と節の間隔は半波長 (1.0cm) である。 これから 求める場所は, Aから 0.5, 1.5, 2.5, 3.5, 4.5, 5.5cmのところとなる。 基本例題47 波の屈折 物理」 図のように,波が媒質I から媒質ⅡI へ進む。媒質 Ⅰ, Ⅱ の中を伝わる波の速さは、それぞれ2v, vである。 面AB QPoint A, Bは同位相で振動しているので, A,Bを結ぶ線分の中点は,定常波の腹になる。 ?? I SE HA 基本問題 351 B C

未解決 回答数: 1
物理 高校生

この問題の答えと解き方を教えていただきたいです

質量Mの太陽のまわりを回っている質量mの小惑星がある。 図のように,この 小惑星および地球の公転軌道は円とみなすことができ, その公転半径はRP, RE である。 ケプラーの3法則および万有引力の法則を用いてつぎの問いに答えよ。 ただし、太陽の万有引力のみを考慮し、他の惑星の影響は無視してよい。 万有 引力定数をGとする。 ケプラーの3法則はつぎのとおりである。 第1法則: 惑星は太陽を焦点とする楕円軌道を描く。 第2法則: 惑星と太陽とを結ぶ線分が単位時間に掃引する面積(面積速度) は惑星の軌道上あらゆる点で一定である。 第3法則: 惑星が太陽のまわりを回る周期の2乗は, 楕円軌道の長半径の3 乗に比例する。 その比例定数は惑星によらず 一定である。 (a) 小惑星の速さ VoをG, M, Rp で表せ。 〔A〕 図のように質量m', 速さVの小物体が 小惑星の軌道の接線方向から飛んで来 て、点Pで小惑星に正面衝突して一体 となった。 小惑星の公転の向きは変わら なかったが, 小惑星の公転軌道は楕円となった。 近日点における太陽との 間の距離は地球公転軌道半径RE に等しく, 遠日点における太陽との間の 距離はもとの公転軌道半径RPに等しかった。 つぎの問いに答えよ。 (b) 衝突直後の小惑星の速さ, um, m', Vo, V を用いて表せ。 (c) 衝突後,太陽からの距離にあり、速さVで楕円運動している小惑星の力 学的エネルギーEをm, m',r, V, G, M を用いて表せ。 ただし, 位置エネルギー は無限遠方をゼロとする。 m'V' 小物体 Rr P(遠日点) 地球 RE 太陽 近日点 Vo m 小惑星 (d) 小惑星の近日点における速さと遠点における速さとの比um/mを求めよ。 (e) uG, M, RE, Rp を用いて表せ。 〔B〕 RP が RE の3倍であるとき, つぎの問いに答えよ。 ただし、1年は3.14×10秒 地球の公転軌道半径は1.50×10km とし, 有効数字2桁で答えを求めよ。 (f) 遠点における小惑星の速さは,衝突前の小惑星の公転速度Vの何倍 であるか。 また, は秒速何km か (g) 衝突後,小惑星が最初に近日点にやってくるのは何年後か。 〔東京工大〕

未解決 回答数: 1