学年

教科

質問の種類

物理 高校生

このgはどうして消えたんですか?

16 第4章 運動の法則 6080A 41. Point! 物体A とおもりBについてつりあい の式を立てる。斜面上の物体Aについては,斜 面方向と斜面に垂直な方向に分けて考える。 物体Aの質量をM = 0.20kg, おもりBの質量を m[kg],重力加速度の大きさをg=9.8m/s?, 糸が引く力 の大きさを T [N] とおく。 斜面に平行にx軸,垂直にy軸 をとる。 y 第4章 運動の法則 ■基礎トレーニング ④ 「運動方程式の立て方」 p.59~60 42. Point! 小球には,重力のみがは きに注意して,運動方程式 「ma= る。 解 答 (1) 小球にはたらく力は重力のみ である。 鉛直上向きを正とすると F=-14.7N となるので 「ma=F」より 1.5a=-14.7 W.. 130% 130° mg -14.7 Mg (2) ( 1 ) より a= == - 9.8m/s2 1.5 解法 物体Aにはたらく重力 Mg のx成分を Wx, y成分 を Wyとする。 直角三角形の辺の長さの比より Wx: Mg=1:2 よってWx=Mgx/12/2 43. Wy: Mg=√3:2 よって Wy= Mg × - √3 2 このとき, つりあいの式は次のようになる。 HT Point! 物体には、糸が引く がはたらく。 合力を求め, 運動 「ma=F」に代入する。 物体にはたらく重力は,鉛直 おもり B: 向きに T-mg=0 物体A: x軸方向 Wx-T=0 y軸方向 N-Wy=0 ①,②式より mg=T=Wx=Mg × 2 よって m=M×12=0.20× 1/2=0.20×1/2=0.10kg ③式より √3 N=Wy=Mgx- 2 √3 = 0.20×9.8×1 ≒1.7N 解法2 それぞれの方向の力のつりあいより おもり B: mg=5.0×9.8=49N 鉛直上向きを正とすると 「ma=F」 より 5.0α = 65-49 よって a=3.2m/s 2 向きは鉛直上 補足 注 「ma=F」 を 5.0α=65 重力 mg が常にはたらいていることを忘れ

解決済み 回答数: 1
物理 高校生

熱力学です STEP3でQinがn(Cv+R)(T2-T1)となってますが、どうやってこれ出してますか??

>>1 圧縮 比例 1 V グラフ ら、熱 出題パターン 38 定モル比熱と定圧モル比熱 「ピストンつきの容器内に, n モルの理想気体が, 体積V1, 温度Tで閉じ こめられている。 大気圧はp, 気体定数は R, 定積モル比熱を Cvとする。 「ピストンを自由に動けるようにして、熱を与えて温度をT2にした。この とき, 内部エネルギーの変化 4U, 気体が外部にした仕事 Wout. 気体に加 えた熱 Qin はいくらか。 また、 以上の結果から,気体の定積モル比熱 Cr と 定圧モル比熱 C, の間にはどのような関係があるか。 解答のポイント! 定圧変化であっても4U = Con⊿T の形となることに注意。 解法 熱力学の解法3ステップで解く。 AJR STEP1 変化の前後でのか,Vn,Tを 図示する。 ここでピストンは自由に動けるので, ピストン内の気体の圧力は大気圧とつりあって いて,いつもpとなる。 このように、大気圧、 重力などの一定の力を受け自由に動けるピスト 前 p V₁ 4 大気圧 nTi ンでは、必ず定圧変化になるのだ。 また、後の圧力 体積を V2 (未知数) とおくと, DV2 n T2 大気 1圧 図 11-4 前 (3 p Nout 前:pV=nRT ... 1 負 後:pV2=nRT ... ② -Wout E縮 STEP2 Vグラフは図11-5のようにな る。 色のついた部分の面積が外へした仕事 Wout V₁ V2 体積V 1). になる。 図 11-5 いる にあ STEP3 熱力学第1法則を表 (表中雪)にまとめると, Qin n(Cy+R) (T2-T, + 4U Wout Cyn (T-T) |p (V2-V)=nR(T2-T) (1②より) また,定圧モル比熱 C, は, 圧力一定で1モルの気体を1K上昇させるのに要する熱 であるので,Qmでn=1 [mol], T2-T=1 [K] としたものに等しく. C=1x (Cy+R)×1=Cv+R この式は理想気体であれば必ず成立するので、この例題とともに覚えておこう。 STAGE 11 気体の熱力学 125

解決済み 回答数: 1
物理 高校生

熱力学です STEP3でQinがn(Cv+R)(T2-T1)となってますが、どうやってこれ出してますか??

出題パターン 38 定積モル比熱と定圧モル比熱 ピストンつきの容器内に、 モルの理想気体が, 体積 V1. 温度Tで閉じ こめられている。 大気圧はp, 気体定数は R, 定積モル比熱をCとする ピストンを自由に動けるようにして、熱を与えて温度を T2 にした。この とき, 内部エネルギーの変化 4U, 気体が外部にした仕事 Wout 気体に加 えた熱 Qin はいくらか。 また、 以上の結果から, 気体の定積モル比熱 Cr と 定圧モル比熱Cの間にはどのような関係があるか。 解答のポイント! 定圧変化であっても 4UCn4T の形となることに注意。 解法 熱力学の解法3ステップで解く。 STEP1 変化の前後でのか,V,n,Tを 図示する。 ここでピストンは自由に動けるので、 ピストン内の気体の圧力は大気圧とつりあって いて、いつもp となる。 このように、大気圧, 重力などの一定の力を受け自由に動けるピスト 前 p V₁ 大気圧 nTi D V2 大気 nT2 図 11-4 ンでは、必ず定圧変化になるのだ。 また後の圧力は最 体積を V2 (未知数) とおくと, 前:pV=RT ... ① 前 圧 Wout 後:pV2=nRT2 ... ② STEP2 Vグラフは図11-5のようにな る。 色のついた部分の面積が外へした仕事 Wout になる。 0 V₁ V2 体積V 図11-5 STEP3 熱力学第1法則を表 (表中) にまとめると, Qin 4U + Wout n(Cy+R) (T2-T) Crn (T2-T)p (V2-V)=nR(T2-T) (1 ②より) また,定圧モル比熱 C, は, 圧力一定で1モルの気体を1K上昇させるのに要する熱 であるので,Qmmでn=1 [mol], T2-T, = 1 [K] としたものに等しく =1x (C+R)×1= [Cy+R この式は理想気体であれば必ず成立するので、 この例題とともに覚えておこう。 STAGE 11 気体の熱力学 125

解決済み 回答数: 1
物理 高校生

(3)がわからないです。なぜ(ア)が答えになるのでしょうか...?(1)の誘導がない場合でも導けるように考え方を教えて頂きたいです。よろしくお願い致します。

B (思考 図1に示すように直交座標系を設定する。 初速度の無視できる電荷g (g>0),質量m の陽子が,y軸上で小さな穴のある電極 a の位置から電極 a b 間の電圧Vでy軸の 正の向きに加速され, z軸に垂直でy軸方 向の長さがしの平板電極c, d (z=±ん) か らなる偏向部に入る。 c, d間にはz軸の 124. 〈電磁場中の荷電粒子の運動〉 x 偏向部 h y E 変位 d 図 1 正の向きに強さEの一様な電場 (電界)が加えられている。これらの装置は真空中にある。 電場は平板電極 c,dにはさまれた領域の外にはもれ出ておらず,ふちの近くでも電極に垂 直であるとし、地磁気および重力の影響は無視できるとする。 〔A〕 電極bの穴を通過した瞬間の陽子の速さvo を,V,g, m を用いて表せ。 〔B〕 その後,陽子は直進し,速さのままで偏向部に入る。 (1)陽子が電極 cに衝突することなく偏向部を出る場合,その瞬間のz 座標 (変位) 21 を Vo,g, m, l,Eを用いて表せ。 (2)Eがある値Eより大きければ陽子は電極cに衝突し,小さければ衝突しない。その値 E を, V, l, んを用いて表せ。 〔C〕 陽子のかわりにα 粒子 (電荷 2g, 質量 4m) を用いて同じV,Eの値で実験を行った ところ,偏向部を出る瞬間の座標 (変位) は 22 であった。 Z2を, 21 を用いて表せ。 [D] E の値をE1 に固定し, 電極 c d にはさまれた領域にx軸の正の向きに磁束密度B (B>0) の一様な磁場 (磁界) を加え, 再び陽子を用いて実験した。 (1) Bをある値 B1 にしたところ,陽子は偏向部を直進し, 偏向部を通過するのに時間 T を要した。 B1 と T1 を, Vo, E1, lを用いてそれぞれ表せ。 (2) Bをある値 B2 (0 <Bz <Bi) にしたところ, 陽子が偏向部を出る直前の座標 (変位) は Z3 (230) であった。このときの陽子の速さを,g,m, V, E1, 23 を用いて表せ。 *(3) Bを 0<B<B, の範囲内で変化させて実験をくり返し, 陽子が偏向部を通過するのに 要する時間を測定した。 このとき, BとTの関係を表すグラフはどのようになるか。 図2の(ア)~(オ)の中から最も適当なものを1つ選べ。 T4 TA (ア) T₁ T4 TA TA (イ) (ウ) (エ) (オ) T1 T1 T1 T₁ 10 B₁ B 0 B₁ B B₁ B 0 B₁ B 0 B₁ B 図2 [東京大〕

解決済み 回答数: 1
物理 高校生

波線のところで、式の変形が分かりません。

出題パターン 20 2物体の正面衝突 質量mの物体Aに初速度vを与えて 質 量M の物体Bに衝突させたところ、衝突後 の物体AおよびBの速度はそれぞれ右向き を正としてVA, UB となった。 (1)この衝突のはねかえり係数をe として, DA, UB を求めよ。 e=0 のとき, 衝突によって失われた力学的エネルギーはいくらか。 解答のポイント! B 軸の正の向きを確認して, 運動量保存則とはねかえり係数の式を連立して解く。 解法 (1) A, B 全体に着目すると外力の力積量 がないので,運動量保存則より, mv=mv+MvB. ・① 前の運動量後の運動量 また、はねかえり係数の式より 前 A 0 (B (日) で近 づいて くる 0+ e= 後でA, B が離れる速さ 前でA, B が近づく速さ Aは左へはねかえるかも しれないが,とりあえず 右向きに仮定しておく! UB VA で離れ ていく VB - VA == ②大の受 UB VA B Vo ②①に代入して, 3 mv = mvs+M(evo +v^) m-eM VA= Vo, = m+M (1+e)m DBm+M Vo 図6-5 《注》 ここでもしm < eMであるとき DA0 となってAは左にはねかえる。 (2)(完全非弾性衝突) のとき失われた力学的エネルギー 4E は, AE =mv mvo² 2 mv+ = -mv21- m 2 m+M mMvo2 =2(m +M)¨¨ mM (m+M)2 (正の向き) どとして) このエネルギーは衝突時に熱などとして 放出される。五 しゅ) TUR

解決済み 回答数: 1
物理 高校生

(3)の解説の変化量のところがわからないです。変化量はどうやって出しているのですか

したがって, 比熱の比は、 例題 S 混合気体 ~ Sast 9912 (5)融解曲 25 29 容積 2.0L, 4.0Lの容器 A, Bが,図のよ うに連結されている。 容器Aにはメタン, 容 器Bには酸素を入れて,ある温度にすると, 圧力はそれぞれ3.0×105 Pa, 6.0×105 Pa だった。コックを開けて気体を混合し、点火 して完全に反応させた後, 元の温度に戻した。 連結管やコック,および, 生じる水 の体積や、水蒸気の蒸気圧は無視してよい。 分子量 CH4=16.0,O2=32.0 点火装置 容器B A 20 想気 (a) f 2.0L 4.0L コック (b) 2 の の (c)】 (1) 反応前の混合気体中のメタンの分圧は何 Paか。 (d) (2) 反応前の容器内の全圧は何Paか。 (3) 反応後の容器内の全圧は何Paか。 KeyPoint 点火前後で温度一定: メタンと酸素のそれぞれにボイルの法則が成立する。 同温同体積 : 圧力比は物質量比に等しい。 ●センサー ●温度一定より, ボイル の法則 piVi=P2V2 ●全圧=分圧の和 ●同一容器内の気体の圧 力比は物質量比に等し い。 →反応による変化量を 圧力で示す。 重要 (1) C 解法 (1) (2) 気体についてボイルの法則が成立する。 混合 後の各気体の分圧を PCH4, Po2 とすると, 混合気体の体積は 6.0Lなので, (2 CH4 : 3.0×10 Pa×2.0L=PcH.〔Pa〕×6.0L PcH=1.0×105 Pa O2 :6.0×10 Pa×4.0L=po〔Pa〕×6.0L Po2=4.0×10 Pa 全圧は,1.0×105 Pa+4.0×10°Pa=5.0×10 Pa (3) 反応前後の物質の量的関係を分圧で考える。 08. CH4 +202 CO2 +2H2O (s) 反応前 〔Pa〕 1.0×105 4.0×100005 変化量〔Pa〕 -1.0×10 -2.0×105 反応後 〔Pa〕 0 2.0×105 1.0×105(無視) 反応後の全圧は、2.0×10 Pa+1.0×105 Pa=3.0×10 Pa 解答 (1)1.0×10 Pa (2)5.0×10 Pa (3)3.0×105 Pa [mL〕| | ル・シャルルの法則 重要

回答募集中 回答数: 0
物理 高校生

θが最大の時に糸を切ったとしたら、おもりはどの方向に自由落下するんですか?

出題パターン 単振り子の周期公式 長さの軽い糸の一端に質量mのおもりを つけ、他端を天井に取りつける。 糸が鉛直になるおもりの位置を原点として、 おもりの通る円弧に沿って軸を定める。 おも りを原点から微小変位させて静かに放したと ころおもりは単振動した。 この単振動の周期 Tを求めよ。 微小角 0 に対する近似 sin99 を用いてもよい。 重力加速度の大きさを”とする。 解答のポイント! まつく m 円弧に沿った方向の加速度をαとして、 座標 xにおける運動方程式を立てる。 与えられた近似と弧長公式 (弧長) (半径)x (中心角)を用いると, (ma=-kx/ の形にもっていける。 解法 この形をつくる!! 円弧状のx軸が与えられている。 単振動の解法3ステップで解く。 STEP1 STEP2 振動中心はつりあいの位置 x = 0 の点。 折り返し点は放した点。 STEP3 図9-20のように, 座標 xでの糸 の傾きを 0 とすると, 弧長公式により, (弧長x) = (半径1) × ( 中心角0 ) 張力S ① +x向きの加速度をαとして, 運動方程式は, ma=mg sin O 0 弧長 mg (近似より) = - mg ○(①) mg xx よって運動方程式の形より, Im 周期T=2 =2 mg g mg 図9-20 し x=lo (この周期は」とのみで決まりや振れ幅にはよらない。) STAGE 09 単振動 1

回答募集中 回答数: 0