学年

教科

質問の種類

物理 高校生

力学的エネルギー保存の法則の問題(写真の赤丸の問題)について質問です。解説の「速さが最大になるときの物体の位置をとする。板を取り去った 
直後とで,力学的エネルギー保存の法則の式を立てる」とは、どう言うことでしょうか。また、「物体の位置がx2のとき、重力による位置エネルギー... 続きを読む

1 3 W₁ 168.弾性体のエネルギー <解答> (1) 解説を参照 (2) mg 1 k 0= mg k (4) x= (1) (2) 物体は重力, 弾性力 垂直抗力を受け、それらの力はつ りあっている。物体の位置がxのときのつりあいの式を立てる。 また, 板が物体からはなれるとき, 垂直抗力が0となる。 (3)物体は重力弾 性力の保存力だけから仕事をされ, その力学的エネルギーは保存される。 ばねの伸びが最大になるとき, 物体の速さは0 となる。(4) 運動エネル ギーをxの関数として式で表し、 速さの最大値を求める。 解説 (1) 物体の位置がxのとき, 弾性力は鉛直 上向きに kx であり, 物体が受ける力は図1のよう に示される。 力のつりあいから、 2mg_ k 1 2 m k 9 mg-kx-N=0 N=mg-kx ...① これから, Nとxとの関係を示すグラフは、図2の ようになる。 (2) 板が物体からはなれるときは, N=0 となる。 (3) -mv-mgx2- 2mg k 図 1 x₁= (4) 速さが最大になるときの物体の位置をxとする。 板を取り去った 直後とで, 力学的エネルギー保存の法則の式を立てると, 2+ +½kx²³² kx mg 図2のグラフから, N = 0 となるxの値は, x= k (3) x=0を重力による位置エネルギーの基準とし, 板を急に取り去っ た直後と, ばねの伸びが最大になったときとで, 力学的エネルギー保 存の法則の式を立てる。 板を急に取り去った直後, 運動エネルギー, 重力および弾性力による位置エネルギーは,いずれも0である。 ばね の伸びが最大になるときの物体の位置をxとすると, その位置での 運動エネルギーは 0, 重力による位置エネルギーはmgx, 弾性力 による位置エネルギーは 1/21 kx² と表される(図3)。これから,力学 的エネルギー保存の法則の式を立てると 図3 200-mgx+1/23kx0=x,(kx,-2mg) x₁=0, 2mg_ k x = 0 は板を取り去った位置なので、 解答に適さない。 したがって, mg て,x2= のとき、1/12mmは最大値 k ▼mg (1) 問題文の 「ゆっく りと下げ・・・」とは,力が つりあったままの状態で 板を下げることを意味す る。 mg_ | mv²=mgx₂= kx²=-=k(x₂ − m ² ) ² + ²q² ... @ 2k 速さが最大となるのは, 式 ② が最大値となるときである。 したがっ m²g² 2k となる。 NA mg 図2 E=0 mg k +½kx² E=0-mgx+ 7 0 ンズ (3) 物体の力学的エネ ルギーは、 運動エネルギ 重力および弾性力に よる位置エネルギーの和 である。 第1章力学Ⅰ 物体の位置がxのと き 重力による位置エネ ルギーはmgxz, 弾性 力による位置エネルギー は kx2²/2 となる。 01/23m²の最大値を求 めるには,式②のように 平方完成をするとよい。 101 some 体に力を加えて いて, この力がする仕事の仕事率を求めよ。 度の大きさをgとする。 (1) 物体と斜面との間に摩擦がない場合 (2) 物体と斜面との間の動摩擦係数がμ' の場合 →例題13 自然の 長さ HALA 168. 弾性体のエネルギー図のように, ばね定数kのばねの 上端を天井に固定し,下端に質量mの物体を取りつける。 ばね が自然の長さとなるように, 板を用いて物体を支える。 ばねが 自然の長さのときの物体の位置を原点として, 鉛直下向きを正 とするx軸をとり,重力加速度の大きさをgとする。 (1) 板をゆっくりと下げ, 物体からはなれるまでの間で,物体 が受ける垂直抗力の大きさNと位置xとの関係をグラフで示せ。 (2) (1)の場合において, 板が物体からはなれるときの物体の位置xを求めよ。 17 (3) 板を急に取り去った場合, ばねの伸びが最大となるときの物体の位置 x を求めよ 物体 板| ばね < (4) (3) の場合において, 物体の速さが最大になるときの物体の位置 x と, そのとき (拓殖大改) 速さ”をそれぞれ求めよ。 [←]自然の長さ ors→Q Ø Ø d d d d d d d d d d d d d d d d d d [知識] 69. 動摩擦力と仕事■ 水平面上の壁にばね定 数んのばねの一端を固定し、 他端に質量mの物 体を取りつけた。 ばねが自然の長さのときの物 日本の位置Oを原点とし、 右向きを正とするx軸 をとる。 物体を原点Oからx軸の正の向きに距離 はなれた位置Pまで引き,静か なすと、物体はx軸の負の向きに向かって動き出し, 0から距離s はなれた位置 8420 (愛知教 停止した。 この運動では,PとQの間のある点で物体の速さが最大となることが観測 た。 物体と面との間の動摩擦係数をμ, 重力加速度の大きさをgとする。 物体が位置Pにあるとき, ばねにたくわえられている弾性エネルギーはいくら 物体が0から距離 x はなれたPとQの間の任意の位置Rにあるとき, 物体の エネルギーはいくらか。 物体が静止する位置Qの座標s はいくらか。 物体の速さが最大となる位置を求めよ。

解決済み 回答数: 1
物理 高校生

力学的エネルギー保存の法則の問題(写真の赤丸の問題)について質問です。解説の「速さが最大になるときの物体の位置をとする。板を取り去った 直後とで,力学的エネルギー保存の法則の式を立てる」とは、どう言うことでしょうか。また、「物体の位置がx2のとき、重力による位置エネルギー... 続きを読む

の長さ h=250 -E 0° ngcos3 0° _mgcos30 30° 168. 弾性体のエネルギー 解答 (1) 解説を参照 (2) (4) x= mg k V= x= mg_ k m k て,x2= g 物体は重力弾性力、垂直抗力を受け、それらの力はつ りあっている。物体の位置がxのときのつりあいの式を立てる。また, 板が物体からはなれるとき,垂直抗力が0となる。(3)物体は重力,弾 性力の保存力だけから仕事をされ,その力学的エネルギーは保存される。 ばねの伸びが最大になるとき, 物体の速さは0 となる。 (4) 運動エネル ギーをxの関数として式で表し, 速さの最大値を求める。 解説 (1) 物体の位置がxのとき, 弾性力は鉛直 上向きにkx であり, 物体が受ける力は図1のよう に示される。 力のつりあいから, mg-kx-N=0 N=mg-kx ...① これから, Nxとの関係を示すグラフは、図2の ようになる。 (2) 板が物体からはなれるときは, N = 0 となる。 (3) mg 図2のグラフから, N = 0 となるxの値は, x= k 2mg k mg のとき, k 図1 Rx N x=0, x = 0 は板を取り去った位置なので、 解答に適さない。 したがって 2mg k mg (3) x=0を重力による位置エネルギーの基準とし, 板を急に取り去っ た直後と, ばねの伸びが最大になったときとで, 力学的エネルギー保 存の法則の式を立てる。 板を急に取り去った直後, 運動エネルギー, 重力および弾性力による位置エネルギーは,いずれも 0である。 ばね の伸びが最大になるときの物体の位置を x1 とすると, その位置での 運動エネルギーは 0, 重力による位置エネルギーはmgx, 弾性力 による位置エネルギーは 1/12 kx² と表される(図3)。これから,力学 図3 的エネルギー保存の法則の式を立てると, 0=0-mgx + 1/23kx120=x(kx-2mg) 1 mv² は最大値 2 (4) 速さが最大になるときの物体の位置を x2 とする。 板を取り去った 直後とで, 力学的エネルギー保存の法則の式を立てると 0=1/2mv-mgx2+1/12kx2² 1/12mmx212/2kx=-12/21(キュー)+².② m²g² mg 2mg_ k 速さが最大となるのは, 式 ② が最大値となるときである。 したがっ m²g² となる。 2k (1) 問題文の 「ゆっく りと下げ・・・」とは,力が つりあったままの状態で 板を下げることを意味す る。 NA mgs 図2 E=0 mg k F000000006 i + 1/2kx ₁² E=0-mgx+- 0 X1 1x (3) 物体の力学的エネ ルギーは, 運動エネルギ 一. 重力および弾性力に よる位置エネルギーの和 である。 第1章 力学Ⅰ 物体の位置がx2のと き, 重力による位置エネ ルギーはmgx2, 弾性 力による位置エネルギー は kx2²/2 となる。 0/1 m² の最大値を求 めるには,式 ② のように 平方完成をするとよい。 101 some きる。 体に力を加えて, 一定の いて,この力がする仕事の仕事率を求めよ。 ただし, 度の大きさをgとする。 (1) 物体と斜面との間に摩擦がない場合 (2) 物体と斜面との間の動摩擦係数がμ' の場合 →例題13 [知識] 69. 動摩擦力と仕事■ 水平面上の壁にばね定 数kのばねの一端を固定し、 他端に質量mの物 168. 弾性体のエネルギー図のように, ばね定数kのばねの 上端を天井に固定し,下端に質量mの物体を取りつける。 ばね が自然の長さとなるように, 板を用いて物体を支える。 ばねが 自然の長さのときの物体の位置を原点として, 鉛直下向きを正 とするx軸をとり,重力加速度の大きさをgとする。 (1) 板をゆっくりと下げ, 物体からはなれるまでの間で,物体 が受ける垂直抗力の大きさNと位置xとの関係をグラフで示せ。 (2) (1)の場合において, 板が物体からはなれるときの物体の位置 x を求めよ。 (4) (3) の場合において, 物体の速さが最大になるときの物体の位置 x と, そのとき (3) 板を急に取り去った場合,ばねの伸びが最大となるときの物体の位置xを求めよ 速さ”をそれぞれ求めよ。 (拓殖大改) 自然の長さ 自然の 長さ 物体 板| Os→0 ばね < 0000 X 体を取りつけた。 ばねが自然の長さのときの物 日本の位置Oを原点とし、 右向きを正とするx軸 をとる。 物体を、原点Oからx軸の正の向きに距離はなれた位置Pまで引き,静か なすと、物体はx軸の負の向きに向かって動き出し, 0から距離s はなれた位置 停止した。 この運動では,PとQの間のある点で物体の速さが最大となることが観測 た。 物体と面との間の動摩擦係数をμ, 重力加速度の大きさをgとする。 物体が位置Pにあるとき, ばねにたくわえられている弾性エネルギーはいくら 物体が0から距離 x はなれたPとQの間の任意の位置Rにあるとき, 物体の エネルギーはいくらか。 物体が静止する位置Qの座標s はいくらか。 物体の速さが最大となる位置を求めよ。 (愛知教育大

解決済み 回答数: 1
物理 高校生

なぜ①+②なんですか? 代入して求めるのではだめですか

第1章 物体の運動とエス <発展例題 18 摩擦のある斜面と2物体の運動 図のように、傾きの角が30° のあらい斜面上 に質量mの物体Aを置き, これに軽い糸をつ け, 軽くてなめらかな定滑車を通して質量 2m のおもりBをつり下げたところ, A, B は動き 出した。 A が斜面を上昇するときの加速度の 大きさはいくらか。 Aと斜面との間の動摩擦 係数を 考え方 . Aにはたらく力 分ける 斜面に平行な力 重力成分 mg sin 30° 動摩擦力 F'= N 糸の張力 T 重力加速度の大きさをgとし, 斜面は固定されているものとする。 √√3 Aの運動方程式 斜面に垂直な力 重力成分 mg cos 30° 垂直抗力 N ・B: 2ma=2mg-T ① +② から, 代入 Aの力のつりあい N = mg cos 30° 3ma=2mg- 1/12 mg/1/15.1mg √3 √√3 2 3ma=mg よって,a=13239 30° mgsin30% F'= 30° -N 解答 A,B の加速度の大きさをα, 糸の張力の大きさをTと し,A,Bの運動の向きをそれぞれ正の向きとする。 運動方程式は m N A ・A:ma=T-mgsin30° 13 mg cos30°…① 斜面方向 = √√3 鉛直方向 sin 30° 130° mg =. 11/212 cos 30°=- √3 2 139 T mg cos30° 2m One Point > 物理独特の言い回し ・なめらかな(面) ⇒ 摩擦の無視できる (面) ・あらい(面) ⇒ 摩擦のある (面) 軽い(糸) ⇒ 質量の無視できる(糸) ・小球 (または小物体) ⇒大きさの無視できる球 (または物体) 補足 糸で結ばれた じ大きさの 運動する。 糸の張力の 糸のどの部 (車 左の結果 T=2m(

解決済み 回答数: 1
物理 高校生

運動エネルギーについての質問です。ケ、コがこのような答えになる理由がわからないです。ケは1/2mu^2+fdだと思いました。

108 第1章 力 学 20. 仕事と運動エネルギー 次の文章の空欄を適切に埋め、後の問に答えよ. mで大 水平面上に軸を定め, x=0の点をA点, x=d(d> 0) の点をB点とする. 質量 きさの無視できる物体Mを, æ 軸上で正の向きにすべらせる. B点までは, 水平面とMの間に は摩擦力がはたらかないでな滑らかにすべるが,B点から先は動摩擦係数μ がはたらく. 重力加速度の大きさをg とし, 動摩擦力の大きさは Mが停止するまで速さによら ず一定としよう. X 初めに, M を一定の速さ voでB点に向けてすべらせる. MはB点を通る瞬間から軸の負 (イ) (ア) の力を受けるので,B点から先では の向きに大きさ だけ後に= (ウ) したがって, MはB点を通過してから時間 する. 次に,” ですべっている M に, A点を通る瞬間からB点に達するまでの間,一定の大きさf (オ) の速さになり,その (キ) だけ後にx= の点で停止 の力をx軸の正の向きに加え続ける. このとき, MはB点で (カ) 後は減速を続け, B点を通過してから時間 する.したがって,Mが動摩擦力を受けてから停止するまでの距離は,f を加えなかったときよ り (ク) | 増加する .M の持つ運動エネルギーを E とし,E をxの関数として表すと,f を加えているとき, A点からB点までの間では, E = (ケ) B点から停止するまでの 間では,E= (コ) となる. 7-7-1 1 で表される動摩擦力 問 次の条件で,A点から M が停止する点までに, Mが持つ運動エネルギーを, f を加える場 合と加えない場合についての関数としてグラフに表せ.g=10m/s2 とする. 条件:d=50m, m=1000kg, vo=10m/s,μ = 0.2, f=1000N E[J] F (I) の加速度を持つ の点で停止

回答募集中 回答数: 0
物理 高校生

問10の振動の中心が下にずれるのは何からわかりますか?

36 単振動 ③ 図のように、 エレベーターの天井にばね定数kの軽いばねの一端 を固定し、 他端に質量mの物体を取り付けた。 ばねの長さが自然長 のときの物体の位置を原点Oとし, 鉛直下向きに軸をとり、 エレ ベーター内の人から見た立場で, 物体の運動について考える。 重力 加速度の大きさをg とする。 〈福岡大・改〉 エレベーターが静止している場合について考える。 問1 ばねが自然長となる位置まで物体を持ち上げて静かにはなす と、物体は静かに振動した。 振動の中心での物体の位置zとして正しいものを、 次の ①~④のうちから一つ選べ。 zo= ① mgk ② 3 2 の解答群 ① mgk mg k 問2 物体の位置がのとき, 物体にはたらく力をk, To, πで表したものとして正しい ものを、次の①~④のうちから一つ選べ。 ①k (x+エ) 2 -k(x+xo) 3k(x-xo) 4-k(x-xo) 問3 問2のつねに振動の中心に向かう力を何というか。 正しいものを次の①~④のう ちから一つ選べ。 ① 慣性力 ②垂直抗力 ③復元力 ④ 重力 m(g-a) k 問4 このときの振動の周期は1, 振幅は 2 である。それぞれの答として正 しいものを、 次の解答群のなかから一つ選べ。 の解答群 02x√mk ② 2π√ ②mg ma=- 2mg k 3 t₁ = と書けるから, 小物体の運動は, [④ k ③2π√ m 2mg k 2π 1 Im @ = π√ k 2 次に、エレベーターが鉛直上向きの一定の加速度で上昇している場合について考える。 この加速度の大きさをaとする。 問5 ばねが自然長となる位置まで物体を持ち上げて静かにはなすと, 物体は力のつり あいの位置を中心として鉛直方向に単振動した。 振動の中心での物体の位置とし て正しいものを、次の①~④のうちから一つ選べ。 = m(g+a) ① ② 2m(g+a) 3 k mg F=-kx+u'mg=-k(x-μ'mg) 小物体の加速度をaとすると, 小物体の運動方程式は, m 4 kx=μmg よって, In=y k 問2 小物体が座標xのとき, 小物体には水平方向にばねの弾性力と動摩擦力がはたら いているから, -kx Mo -k(エードm2) よって,a=-; k (x-μ'mg) m k _mgを中心とした角振動数 69 = I= k k mg 1 k 4 2Vm mg ~000000000000 の単振動 となる。 よって, 小物体を静かに放してから次に速度が0になるまでの時間は単振 動の周期の半分になるから, 36 問1 ② 問2④ 問3 [③] 問4 1:②2:② 問5 ② 問6 [④] 問7 ② 問8③ 問9② 問10 ⑦ より, To=22 □ k m(g+a) 解説 問1 物体が位置にあるとき物体には重力 mg, ばねの弾性力 kx がはたらく。 加速度をα とすると, 運動方程式は, ma=-kr+mg より, x+g=-- ・・・・・・(i) 振動の中心では加速度 α が0となることから,物体はx=mgを中心 mg ......(ii) とする単振動をする。よって、 am pimg 0+ | Point 振動の中心(力のつりあいの位置) では、物体の加速度は0. 速度は最大。 問2 (ii)式より mg=kx であるから, 位置xのとき物体にはたらく力は, f=-kx+mg=-kx+kro=-k(x-xo) 問3 復元力。 物体に, 力のつりあいの位置からの変位 (x-x。) に比例した力がつねに 中心方向にはたらくとき, 物体は単振動をする。 問4 このときの角振動数を400, 周期をTとし, (i) 式を単振動の式 a=-2(x-xo) と比べて Wo=₁ Vm mg 第1章 力学 問6 物体の位置がxのとき, 物体の加速度をm, k, x, x1 を用いて表したものとして 正しいものを、次の①~④のうちから一つ選べ。 =(x+x₁) ③ -(x-x₁) @ -(x-x₁) [① =(x+x₁) ② kl m [① 問7 この単振動の角振動数として正しいものを、 次の①~④のうちから一つ選べ。 V k ② k V m m ③ /2k Vm 問8 エレベーターが静止している場合と比較すると, 周期は何倍になっているか。 正 しいものを次の①~④のうちから一つ選べ。 倍 01/0 31 42 問9 振幅として正しいものを、次の①~④のうちから一つ選べ。 m(g-a) m(g+a) 2m(g+a) ③ 4 k k 問10 振動の中心は, エレベーターが静止して いる場合と比べて距離 アだけ に ずれている。アとイに入れる式と 語の組合せとして正しいものを、 次の①~⑧ のうちから一つ選べ。 a₁=- m k ④2m A₁=n=" ......(iii) ① ② 問10問1 問5の結果より, X1 Xo = 3 4 ⑤ (6) 1) 8 _m(g+a)_me="k ma k m(g+a) ア mak ma 2k より、 α= = 1/² {x_m(g+a)} となるから、物体はx=m(g+α) (=z) を中心とする単振動 をする。 問6 ()式で! mota) として, k( (x-x₁)(iv) 772 問7 振動の中心を原点とするX軸をとると,X=ェーエ」 となり, (iv)式は, k 自然長の位置 (x=0) が振動の端点になる。 ma k k ma mak また, 物体を自然長の位置から静かにはなすと, 自然長の位置 (x=0) が振動の端点 になり, 振幅 A, は, Aozo- mg k ma 2k (i)式はαo=(x-xa) と書ける。 振動の中心を原点としてX軸をとる m と表せるから 単振動の式 α = ² X と比べると, 角振動数 (1) は, k an √ m 問8 このときの周期をTとすると, T=2x=2x、m=To ma k k ma と、X=ェェ。 と表され, X=0 を中心とする単振動の式はαo=wX となる。 問5 エレベーターの中で観測する人から見ると, 物体には慣性力 maがx軸正の向き (鉛直下向き) に見かけ上はたらく。 物体の 加速度をαとして運動方程式は, 1a ma=-kr+mg+ma @0₁ であるから1倍である。 問9 自然 (z=0) の位置から静かに放しているから, 振幅 A, は, m(g+a) k よって、振動の中心は距離だけ下にずれている。 イ 上 上 44 6000000000 下 下 Ima エ 下 下 8 37 問1 ③ 問2 ② 問6① 問7④ 問3② 問 4 ④ 問5② 問8 [③] 問9① 問10 ④ 解説 問1 おもりがx=0 (振動の中心) より左にあっても右にあっても, x=0 に向 第1章力学

回答募集中 回答数: 0