学年

教科

質問の種類

物理 高校生

(1)を図ありで説明して欲しいです🙇‍♂️

2.0m/s 例題 3速度の合成 →8 解説動画 流れの速さが2.0m/sのまっすぐな川がある。 この川を,静水上を4.0m/sの速さで進む船 川を直角に横切りながら、 対岸まで進む。 このとき, 川の流れの方向をx方向, 対岸へ向かう 方向を方向とする。 (1) 静水上における, 船の速度のx成分を求めよ。 (2) 静水上における, 船の速度の成分を求めよ。 第1章 ◆(3) へさきを向けるべき図の角8の値を求めよ。 脂指針 川の流れの速度と船 (静水上)の速度の合成速度の向きが, 川の流れと垂直になる。 解答 (1) 船が川を直角に横切るとき, 船の速度のx成 分と, 川の流れの速度は打ち消しあっている。 よって 船の速度の成分は (2) 船が川の流れに対して直角に進 むので、 右図のように,船 (静水 上)の速度と川の流れの速度の 合成速度が、川の流れと垂直に なる ここで, PQR は辺の比 が1:2:√3 の直角三角形であ る。 2.0m/s ① QR へ60° 4.0m/s 09 1 P2.0m/s よって PR=2.0√3≒3.5 ゆえに、船の速度のy成分は 3.5m/s 別解 三平方の定理より PR=√4.0°-2.02=√12=2√3 3.5 (3)(2)より0=60° [注] 川を横切る船はへさきの向きとは異なる向きに進 む。 [注 √31.732・・・ や, √2 1414・・・ などの値は覚え ておこう。 演の

回答募集中 回答数: 0
物理 高校生

(2)について。 bc間の電圧を求めるのに、R3の抵抗を用いないのは何故ですか?

解説動画 基本例題28 抵抗の接続 (1) ac 間の合成抵抗はいくらか。 図のような電気回路について,次の各問に答えよ。 基本問題 232 233 234 R2 (2) bc 間の電圧はいくらか。 R2 の抵抗には 0.80Aの電流が流れている。このとき, 以下の各問に答えよ。 SS R₁ 6.0Ω a C R3 4.0Ω 12 (1) 第1章 電気 (3) ac 間の電圧はいくらか。 指針 2.012 (1) 並列に接続された R2, R3 の合 成抵抗を求め,その合成抵抗と直列に接続され た R との合成抵抗を求める。 (2) R2, R3は並列に接続されており,等しい電 圧が加わるので, R2 に加わる電圧を求める。 (3) ab 間, bc間のそれぞれに加わる電圧の和が, ac 間の電圧である。 (3) R3 を流れる電流を I3 とすると,オームの法 則から, V DC 13-R3 = 4.8 12 =0.40A は, R2, R3 を流れる電流の を流れる電流I 2に等しい。 L=0.80 +0.40=1.20A ac 間の電圧 Vac は, ab 間の電圧 Vab, bc 間の 電圧Vbc の和に等しい。 解説 (1) 並列に接続された R2, R3 の合==4.0×1.20=4.8V 成抵抗を R' とすると, Vac=ab+Vbc=4.8+4.8=9.6V 1 1 1 1 + 1 + R'=4.0Ω R=R+R'=4.0+4.0=8.0Ω (S) Point 電気回路の問題では, 直列接続, 並列接 続の特徴を把握することが重要である。 直列接続… 各抵抗を流れる電流は等しい。 R' R2 R3 6.0 12 ac 間の合成抵抗をR とすると, (2) 求める電圧を Vbc, R2 を流れる電流をI と すると, オームの法則 「V=RI」から, Vbc=RzIz=6.0×0.80=4.8V (各抵抗の電圧の和)=(全体の電圧) 並列接続…各抵抗に加わる電圧は等しい。 (各抵抗の電流の和)=(全体の電流)

解決済み 回答数: 1
物理 高校生

(3)の青ペンのところがわかりません。 どうして変位を-4mとして解くのですか

問題 03 相対速度・ 相対加速度 第1章力学 物理基礎 公式 相対加速度 wwwww (Aに対するBの相対加速度)(Bの加速度) (Aの加速度) \ www Aが基準 www 基準を引く 図2のv-tグラフの傾きから, Aの加速度は1.0[m/s], Bの加速度 はαB=2.0〔m/s2] と読み取れるので, 求める相対加速度4AB 〔m/s2] は. aAB = AB-AA= -2.0-1.0=-3.0[m/s2] (3)(1),(2),Aに対するBの相対速度, 相対加速度を求めた。 これより, 時 刻 t = 0 におけるAに対するBの運動のようすを図示すると、下図のように なる。 図1のように,一直線上で運動して いる物体AとBがある。 時刻t=0に おいて,物体AとBは4.0m離れてい て, v-tグラフ (図2) のような等加速 度直線運動をしていた。 ある時間後, 物体AとBは衝突した。 ただし,速度 と加速度は右向きを正にとるものとす る。 有効数字2桁で答えよ。 速度 物体A 0- -4.0m- 図1 2 速 1 物体A 0 V [m/s] 物体B (1)時刻 t = 0 において, 物体Aに対 するBの相対速度はいくらか。 物体B 0 (2) 物体AがBに衝突するまでの物 体Aに対するBの相対加速度はいくらか。 (3) 物体AとBが衝突するまでの時間はいくらか。 0 1 2 経過時間[s] <t=0のとき> 図2 v-tグラフ A (静止) f[s]と同じである。s=uot + 1/2atより、 13.0m/s2 B 1.0m/s - x(m) (4) 物体AとBが衝突する直前の相対速度の大きさはいくらか。 -4.0 0 <弘前大 > はじめのBの位置をx=0[m] とし, 右向きを正とすると, はじめのAの 位置はx=4.0 〔m〕 になる。 (3)で求める時間は, 初速度をv1.0 [m/s], 加速度をa=3.0[m/s2] として, 変位s=4.0[m] となるまでの時間 d₁o 1 -4.0 = 1.0.++ ( (-3.0) t2 2 相対速度 (3t+4) (t-2)=0 これより=-1/3.2 t= 運動している観測者から見た物体の運動を相対運動という。 (解説) (I)「Aに対するBの相対速度」とは, 「Aから見たBの速度」 すなわち「Aと一緒に運動する観測者から見たBの速度」のことである。 公式 (Aに対するBの相対速度)= (Bの速度)(Aの速度) ww Aが基準 wwwwwww 基準を引く 図2のv-tグラフより 時刻t=0において, Aの速度はv=0[m/s], B の速度はv=1.0 [m/s] である。 よって, 求める相対速度 VAB [m/s] は, VAB=UB-VA=1.0-0=1.0[m/s] (2)速度と同じく, 加速度も相対加速度を考えることができる。 この式 (tについての2次方程式) を解くと, t>0なので,t=2= 2.0[s] を選べばよい。 (4) 衝突する直前の相対速度vAB 〔m/s] は,v=vo + atより よって, VAB'=-5.0[m/s] 求める相対速度の 「大きさ」 は, 5.0m/sである。 UAB′ = 1.0+(-3.0) 2.0 (1) 1.0m/s (2)- -3.0m/s2 (3)2.0s (4)5.0m/s 1. 速度 加速度 11

回答募集中 回答数: 0
1/20