学年

教科

質問の種類

物理 高校生

この問題は、等速円運動ではない円運動をしていますよね? 等速円運動ではないのに、等速円運動の運動方程式(F=m×r分のv2乗)を使えるのはなぜですか?

遠心力に関係した身近なものとしては,洗濯機や遊園地のループ式ジェットコースターなどがある。 例題15 鉛直面内での円運動 右図のような, 半径[m〕のなめらかな円筒面に向 けて,質量m〔kg〕 の小物体を大きさ [m/s] の初速 度でなめらかな水平面からすべらせる。 重力加速度の 大きさをg〔m/s'] とする。 53 58 62 B C P (1) 鉛直線となす角が0の点(図の点C) を通過すると きの, 小物体の速さと面から受ける垂直抗力の大き さを求めよ。 人 (2)小物体が点Bを通過するための の条件を求めよ。 Um 0.0& m Vo センサー 14 円運動では,地上から見てる 解くか、物体から見て解く かを決める。 解答 (1) Cでの小物体の速さを [m/s] とすると, 力学的エネルギー 保存の法則より, Bmgcose N C 1 1 ,2= mvo mv+mg(r+rcost) ① 地上から見る場合 2 遠心力は考えず,力を円の 半径方向と接線方向に分解 し円運動の半径方向の運 動方程式を立てる。 ゆえに、 cos00 mg ......① 12 m-=F r または mrw²=F ② 物体から見る場合 遠心力を考え、力を円の半 径方向と接線方向に分解し, 半径方向のつり合いの式を 立てる。 ※どちらでも解ける。 ● センサー 15 v= vv-2gr(1+cos0)[m/s] 垂直抗力の大きさを N[N] とすると, 地上から見た円運動の運動方程式は, v² m =N+mg cose r これを代入し、整理すると, 2 mvo N= -mg (2+3cos) 〔N〕 r ......② 別解 小物体から見ると, 円の半径方向にはたらく力は、実際 にはたらく力のほかに、円の中心から遠ざかる向き に遠心力がはたらいている。 半径方向の力のつり r 物体が面に接しているとき, 垂直抗力 N ≧0 合いより, m01.0 v² ◆N+mg cose-m - 00 (量的関係は上と同じ) (1) 水平面を重力による位置 エネルギーの基準面とする。 r 非等速円運動では、円の接線方向にも加速度があり、物体か ら見た場合、接線方向での力のつり合いを考えるためには,接 線方向にはたらく慣性力を考える必要がある。 (2)(1)より, 00 [ad] では, 0が小さくなるにつれて, 0, Nはともに減少していく。 点Bを通過するためには,点B で0かつN≧0 であればよい。 ①より, 8 = 0 を”に代 入して, v = √vo²-4gr よって, v4gr>0 ゆえに mvo また,②より 8=0をNに代入して, N= 5mg ④を比較すると, N≧0(面から離れない条件) が の条件を決めることになる。 2 mvo よって, -5mg≥0 ゆえに、r r ③④がともに成り立つためには、ひ≧√5gr 5

解決済み 回答数: 1
物理 高校生

2番でなぜN=mgとならないのでしょうか? 向心力が働くみたいなことは、なんとなくわかるのですがどうも納得できないです。 教えて頂きたいです

~14, 求めよ。 べり出す のつりあい ngy J 215.2 AN ② "s") Scost-mg=U mg coso Ssine S= (2) 糸の張力の水平成分 Ssin0=mgtan0 が向 心力となる。 運動方程式 「mrw²=F」から, mg 1 基本例題30 鉛直面内の円運動 図のように,質量mの小物体が, 摩擦のない斜mid 面上の高さんの点から静かにすべりおりた。斜面 の最下点は半径rの円の一部になっている。重力 加速度の大きさをg として,次の各問に答えよ。 (1) 斜面の最下点での小物体の速さを求めよ。 (2) 斜面の最下点で, 小物体が面から受ける垂直抗力の大きさを求めよ。 天一 www 指針 (1) では,力学的エネルギー保存の 法則から速さを求める。 この結果を用いて (2) では、最下点での半径方向の運動方程式を立てる。 解説 (1) 最下点での速さを”とし, す べり始めた直後と最下点に達したときとで, カ 学的エネルギー保存の法則を用いる。 最下点を 高さの基準とすると, -mv² m (L sint) w-mg tanu=U Point 向心力は,重力や摩擦力のような力の 種類を表す名称でなく、円運動を生じさせる原 因となる力の総称で、常に円の中心を向く。 09 213 (基本問題 mgh= v=√2gh (2) 重力と垂直抗力の合力が,最下点での小物 th 体の向心力になる。 半径方向の運動方程式は, 大 v² _=N-mg N m r r (1) の結果を用いて N=mg(1+2h) mg Point 鉛直面内の運動は等速円運動とならな いが,各瞬間において、 等速円運動と同様の運 動方程式を立てることができる。 | 8. 円運動 101

解決済み 回答数: 1