学年

教科

質問の種類

物理 高校生

基本例題68の(2)で どうしてグラフの交点が答えになるのでしょうか

9:26 5月11日 (土) ... 例題 解説動画 @ 93% 題 485 基本例題68 非直線抵抗 物理 基本問題 487, 489 E₁ d 図のような特性をもつ白熱電球Lと200Ωの抵抗Rを直 列に接続し、内部抵抗が無視できる起電力100Vの電池に 電流 [A] 1.0 e CD つなぐ。次の各問に答えよ。 0.8 E2 f (1) 白熱電球Lの両端の電圧をV, 回路を流れる電流を0.6 Iとして,VとIの関係式を示せ。 0.4 0.2 (2) 回路を流れる電流の大きさを求めよ。 電圧[V] -, 計算 (3) 白熱電球Lで消費される電力を求めよ。 0 20 40 60 80 100 これか 負なの 。 =0.40A, 指針 (1) 白熱電球Lの両端の電圧Vと, 抵抗Rの両端の電圧の和が, 100V になること を利用して式を立てる。 となる。 V+200I=100 (またはV=100-200I) [A] ↑ 第V章 電気 き,電 向き の符号 略の取 閉回路 ■解説 の閉回 式 (1)回路は,図のよう に示される。 R の両端 の電圧は200I であり, これとVの和が100V (2) (1)で求めたVとIの関係を特性曲線のグラ フに描くと, 特性曲線との交点の値が, 回路を 流れる電流I, 白熱電球にかかる電圧Vとなる。 (3) 「P=VI」 の式を用いる。 (2) (1)の結果を特性 曲線のグラフに示す と、図のようになる。 交点を読み取ると, I=0.40A (3)(2)のグラフの交 点から, V=20Vと 0.4 V=100-200 R 200Ω 0 20 100[V] TKV- 200g I 100V|| 読み取れる。 求める電力をPとすると,Lにか かる電圧がV, Lを流れる電流がIなので, P=VI=20×0.40 = 8.0W 題 486 基本問題 [知識 473.電流と電子の速さ 断面積 2.0×10m²のアルミニウムの導線に, 4.8Aの電流が れてマン 3 + + not* × 1028 愛のな

解決済み 回答数: 1
物理 高校生

(2)においてばねの伸びがa-xになるのは何故ですか? a+bだと思ったのですが

出題パターン 鉛直方向への物体の単振動 XA a ばね定数のばねを鉛直に立て、床に固定する。 ば ねの上端に質量の薄い板Bを取りつけ, 板の上 質量の小球A を乗せると、 自然長からだけ縮 んで静止した。 このつりあいの位置を0として、 鉛直上向きに軸をとる。 また、 重力加速度の大きさ をgとする。 (1) ばねの痛み α を求めよ。 次に板B をつりあいの位置から、さらに (0) だけ下げて静かに放すと、 AとBは一体となり単振 動した。 小球Aと板Bの単振動の周期を求めよ。 (3) 位置における, 小球 Aの速さを求めよ。 0 eeeeeee 1-2xy (4) 小球Aが板Bから受ける垂直抗力N の関数として表せ。 代入して などと (5) 小球Aが板Bから離れないもの条件を求めよ。 解答のポイント! A. B間に働く垂直抗力をNとして, A, B それぞれの運動方程式を立て N を求め, AがBから離れる 垂直抗力NO を用いる。 解法 (1)問題文の図で、力のつりあいより (a-x)だけ元に 戻ろする ポイント!! (M+m)g=ka M+mg ... 00 k 今後の式変形に、この人を フル活用することになる。 (2) 単振動の解法3ステップで解く。 X1 必ず向きを Ma +9 れない条件 STEP1 x 軸は与えられている。 STEP2 振動中心は、つりあいの (白)a 位置x=0の点。 折り返し点は速さ0で静かに放し そろえる α ka at Mg x = -b と, 振動中心に対して対 称の位置にあるx=bo X(中)0* mg 図9-8 自然長はx=αの点。 STEP3 9-8 のように、加速度をα. A,B間の垂直抗力をN ると, 図9-8 より A,Bの運動方程式は,

解決済み 回答数: 1