学年

教科

質問の種類

物理 高校生

写真の問題の赤線部についてですが、問題ではvがそれぞれ45°と角度が等しいことから、 赤線部のような作図をするとOPQが二等辺三角形になりOP=OQが半径であることから交点Oが円の中心であると求めることができると思うのですが、例えばPにおける角度が30°でQにおける角度が6... 続きを読む

85 ローレンツカ 一様な電場, または一様な磁場の中で, 正に帯電 した粒子が平面内を運動した。 図に示すように,平 面内の直線上に距離Lだけ離れた2点P, Q があ り,粒子は,点Pを直線と45°をなす方向に速さ 1916.h P V x 2 荷電粒子は磁場から進行方向に垂直なローレンツカ を受け, これが向心力となって等速円運動をする。点 P, 点Qを通りそれぞれの速度ベクトルに垂直な直線 をひく(図b)。 この2直線の上に円の中心があるの で, その交点が中心0になる。点Pにおける向心力は POの向きであるから, フレミングの左手の法則より 磁場は紙面に垂直で裏から表の向きになるので、⑤が正しい。 45° で通過した後、点Qを直線と45° をなす方向に同じ速さで通過した *A-0LMPI 5MODUSERT 問1 このとき, 電場や磁場の向きとして最も なものを、 右の①~⑥のうちから一つずつ選べ。 ただし、同じものを繰り返し選んでもよい。 電場の場合: 1 磁場の場合: 2 AOO GEL Pf 45° 図 b ひ (2016) 紙面に垂直で裏から表の向き 紙面に垂直で表から裏の向き 1 V

回答募集中 回答数: 0
物理 高校生

緑のマーカーで引いているのがテストで間違えたところですべて分かりやすく解き方と解説お願いします🙇‍♀️ 今日中に答えてくれると嬉しいです!!! 宜しくお願いします!!!

p²-v₁² = ( 4 【選択肢】 (ア) votax いものや、不正をした (4) 3.72x106-2.5x105 37.2×105-2.5×101 12.5 1年物理基礎 1 文字,ox,a, を使って、以下の加速度運動の3つの公式をすべて書きたい。 次の文中の (①)~( に当てはまる文字式を,以下の選択肢 (ア) (カ)のうちから1つずつ選び記号で答えよ。 1つめの公式は、セー (① (3) となる。 (2) 5.1+3.56 =8,66÷8.7 右向きに 2.0 いないものは受け付 34.73.47×10 3.5 図は ラフの接線である。 次の各問に答えよ。 Tox soubun in 16.0-40 4,0-2,0 (イ) Dotat (15) vot+at² (I) vo+at² (オ) 2at (カ) 2ax 以下の例にならって、有効数字の桁数に注意して、次の(1)~(5)の測定値を計算せよ。 足し算引き算) の有効数字】 計算結果を、測定値の末位が最も高い数字に合わせて四捨五入します (991) 23.45+5.6=29.05 29.1 ko 5.0 9.0 6.0m15 で,2つめの公式は、y= (1) 2.6+1.6 (3) 8.5+4.5 = 13.0 (4) 4.20.6 = 3.6 42 3 以下の例にならって、有効数字の桁数に注意して,次の(1)~(5)の測定値を計算せよ。 (1) 3.2x102+2.5x102 (2) 4.75x 10³ +2.7x 10¹ (3) 5.1×10^-2.4x 10 (5) (6.0×10)×(2.5x102) 5 左向きにも (1) 時刻 20sから4.0s の間の、物体の平均の速度はいくらか。 (2) 時刻 2.0sにおける瞬間の速度はいくらか。 b 12.0 2,0 12,0 想文コンクールに応 。。 = 6.0 から 5.0t….30 (55) (②)で、3つめの公式は、 の表紙をつけて提出 4.75 -20=10+5.00 -5.00-10+20 -5.00=30500y9.0 to bo やか課題考査ⅡI 45 6.0 30 15,00 15×10. x[m]と時刻 [s)との関係を表している。 図中の直線は、 時刻 20sにおけるグ 軸上を運動している物体の位置 4,75 27 31.05 2 x [m) ↑ 16.0 12.0 9.0 (+)31-75×10² 4.0 1.01 0 5枚(1 3.175×100 0.76 314 4 (5) 4.20.76 = 3.4434 Vi Vo+at V1.0.0,50 2,0 1,0410 2.0 品 5 次の各設問に答えよ。 ただし, ベクトル量の答え方に注意せよ。 --+(214-0) (43,910) (1) 一定の速さ5.0m/sで直線上を走るとき, 9.0s間に進む距離は何mか。 9.0-40 32:50 (2) 静水の場合に速さ5.0m/sで進む船が, 速さ 1.0m/sで流れる川を下流から上流に向かって進んでいる。 岸から見た船の速度はいくらか。 (3) 直線上を右向きに速さ1.0m/sで歩いているA君から, 左向きに速さ5.0m/sで走っているB君を見たときの相対速度 10mls を求めよ。 神速度(Vo) -5.0-(+10) Vo = -5.0-1.0 = -6.0% 左向きに 6.0m/s 6.0m² V (4) 直線上を右向きに速さ10m/sで進んでいた物体が、一定の加速度の運動を始めて、 5.0s後に左向きに速さ20m/sと なった。 この間の加速度を求めよ。 Vo Dr 七 ↓ (5) 物体がx軸上を初速度1.0m/s, 一定の加速度 0.50m/s² 2.0s間運動すると、速度はいくらになるか。 符号を付け て答えよ。 12.7 (40問) 「6 図は、 Aは原点 ただし, 1 1 2 3 4 t(s) (1) グ (2) 小 (3) 時 小 の (4) (5)

回答募集中 回答数: 0
物理 高校生

物理運動量の和の話です。(15)を求めるのですが、自分は緑で書いたように立式してしまったのですが、色々ご指摘を貰いたいです。 このワークでは反発係数を求める問題ですが、最初の速度に反発係数をかけると、後の速度が出るということが出るという事で、今回そのような立式をしました。 ... 続きを読む

13 次の文章の空欄 【11】~【15】 にあてはまる最も適当なものを、 解答群から選べ。 ただし、同じも のを何度選んでもよい。 図1のように、 なめらかな水平面上で, 速さ 3.0m/sで右向きに進む質量 2.0kgの台車Aと, 速さ 1.0m/s で左向きに進む質量 1.0kgの台車 B がある。速度の正の向きを右向きとする。台 車A,Bの運動量の和は【11】kg・m/s である。 台車 A,Bの衝突直後,図2のように, 台車Aが速さ 1.0m/sで右向きに進むとき,台車Bは 速さ 【12】m/s で右向きに進む。この衝突によって【13】Jの力学的エネルギーが失われ,台車A, Bの間の反発係数 (はね返り係数)は 【14】 である。 その後,台車Bは水平面の右側に固定されたばねではね返り, 台車Aと2回目の衝突をする。 その衝突後, 台車 A,Bはそれぞれ水平面の左側、右側に固定されたばねではね返り,3回目の 衝突をする。 3回目の衝突直後の台車 A,Bの運動量の和は【15】kg・m/s である。 ただし,台車 がばねではね返るとき, 力学的エネルギーは保存するものとする。 また, 台車 A, B が衝突する とき, 台車 A, Bは共にばねから離れているものとする。 000000 -00000 3回目: 2.49 3.0m/s 反発係数=0.50 1回目衡後A=10m/s 2周目 LAT = 1.0m/s A A=1.0×0.50 =0.50 衝突前 1回目の衝突直後 図 1 図2 GB= 1.0m/s B B 3.0 M(J 156- Icg 4 :3.0×0.5 =1.5 eft = 65 fal ~1.75 = 0.50×0.50 - 0₂21 P=0.25×2.0+0.75×10=0.fotagr =1.325 ばね 000 ばね 0000

回答募集中 回答数: 0