学年

教科

質問の種類

物理 高校生

3番の光路長の部分が分かりません。なぜna+s1o-aになるのですか?

Od 応用問題 196 ヤングの実験 図1のよう な装置で, レーザー光線を光源として 用いる。 S, S2 はスリットで, その後 ろにスクリーン ABが置いてある。 スリット S と S2 の間隔をd〔m〕 ス リット板からスクリーン ABまでの 図 1 図2 距離をl[m〕 とし, lはdに比べて十分大きいとする。 また, 用いたレーザー光線の空気 中での波長を入〔m〕 とし、空気の屈折率を1.0 とする。 (1)スクリーン上の原点Oからその上の距離 x 〔m〕 の点をPとしたとき, スリットから 点Pまでの経路 SP と SP の光路差を求めよ。 lはxに比べても十分大きいとする。 (2) スクリーン AB 上に現れる干渉縞の間隔を求めよ。 じま 次に図2のように,スリット S」 のスクリーン側の面を,厚さα〔m〕,屈折率nの透明 な薄膜でおおったところ、干渉縞の中央明帯の位置がずれた。 A S2 O x IB (3) 薄膜でおおったときの中央明帯の位置のずれはどちら向きにどれほどか。 (4) 光の波長 入=4.0×10^7m, 薄膜の屈折率 n=1.2 のとき (3)の位置のずれは干渉縞 の間隔の2倍であった。このときの薄膜の厚さα〔m〕を求めよ。 [山口大改〕 190 2つに分け 定された鏡Aで反射して同 Hを透過してHから距離 する。一方,Sを出て Bで反射して同じ経路 干渉する。 初めのH る。 Hの厚さは無 (1) B を少しずつ、 たとき、最大 し、初めの (2) B を初め 光の強 (3) 次に, 等しく 250 F +6 ヒント

回答募集中 回答数: 0
物理 高校生

この問題の(カ)で、v'=√V x二乗+V y二乗となっているのですが、これは、 x成分と y成分の速さを合成したということですか?

8. <斜面をのぼる小球の運動〉 水平な面(下面)の上に,高さんの 水平な平面(上面)が斜面でなめらか につながっている。 図に示すように x, y, y'軸をとり、斜面の角度は軸方向から見た断面図 である。 下面上でy軸の正の向きに y軸とのなす角を 6, として. 質量 mの小球を速さで走らせた。 な お.06 <90° かつ">0とし、小球は面から飛び上がることはないものとする。 また, 重 力加速度の大きさをgとし、斜面はなめらかであるとする。 次のアイに入る最も適当なものを文末の選択肢群から選べ。 また. ウクに入る数式を求めよ。 (1) 斜面をのぼりだした小球は、x軸方向にはア, 斜面上のy'軸方向にはイをす る。 小球が斜面をのぼりきって上面に到達したときの小球の速度x成分の大きさは y成分の大きさはエ(のぼりきる直前の速度のy成分の大きさに等しい)。 ま た。斜面をのぼり始めてから上面に到達するまでにかかる時間はオである。上面で sin 小球の進む方向とy軸とのなす角度を 62 とすると, 0, と 62 の関係は、 と sind= なる。 (2) 初速度の大きさを一定に保ちながら, 0, を0から徐々に増やしていったとき, 0, が小 さいうちは小球は上面に到達した。 しかし, 6, がある角度に達すると上面に到達でき ずに下面にもどってきた。 このときの6cの満たす条件は, sinc=キであり、また 200cのとき小球が斜面をのぼり始めてから再び下面にもどるまでにかかる時間は [クである。 イの選択肢] ア ①等速度運動 ③ 加速度 a-gcos の等加速度運動 ⑤ 加速度 αー の等加速度運動 ⑦ 加速度 α! の等加速度運動 sind 9 tan ② 加速度 α-gsin ⑩ 加速度 α=-gtan ⑥ 加速度 α= COS 6 の等加速度運 の等加速度運動 の等加速度運動 (上智大)

回答募集中 回答数: 0
物理 高校生

物理のヤングの実験についてです。 最初の青線のところの(エ)の式変形が分かりません。 あと下の(キ)もわかりません。

170 第3編 波 基本問題 337. ヤングの実験次の を正しく埋めよ。 図のように, 単色光源をスリット So およびスリット 光源 S1, S2 を通してスクリーンに当てる。 So と S1,S2 の中 点M を通る直線とスクリーンの交点をOとする。 スリッ ト S1, S2 の間隔を d, MO の距離をとする。 また, 空 気の屈折率を1とする。 これは, 実験を行った科学者の名前からアの実験とよば れている。 S1 -Sol -M+₁- S21 スクリー スクリーン上で点Oから距離xだけ離れた点をPとするとき, 距離 SPはイ 距離 S2Pはウとなる。ここで, xやdに比べて1が十分大きいとする。|a|が1に 記 338 回折格子 図のように 格子定数の同 比べて十分小さい場合に成立する近似式√1+α=(1+1+を使うと,S,P と SPの光路差はエ】となる。 波長を入とすると, 点Pで明線となる条件式は m(m=0,1,2, ・・・・・) を用いてオとなる。 (a)波長 4.5×10-'m の青色の単色光源を用いたとき, 隣りあう明線の間隔はカm となる。 ただし, d = 0.10mm, l=1.0m とする。 (b) 波長 4.5×10-7m の青色の単色光源と波長 6.0×10-7m の橙色の単色光源を同時に 用いたとき, スクリーン上で, 青色と橙色の2色の明線が重なる位置が確認された。 2色の明線が重なる位置の間隔はキmとなる。 ただし, d=0.10mm, l=1.0m とする。 [北見工大改] 例題 66,343 A SEN 光と 折角を 光Iと 流水の 光が強め 人気の色に また、

回答募集中 回答数: 0
物理 高校生

問13でなぜ、正弦波がこのようになるのかを教えて頂きたいです。 よろしくお願いいたします

速さ、 よりあって 常に等し 節となる。 り返す 上下に 15 正弦波の反射 2 図の点O(x=0) 波源があり,端Aは固 定端である。 波源が振幅 0.10m 周期 0.20秒で振動し、連続的に正弦波を送り 0.30秒後に観察される波形を図示せよ。 出す。 正弦波の先端が点Pに達してから, 0.20 波長は, a/10 1速さひは,v=- = 14 (p.146式(2))から, t2 T 入 = 0.20×2=0.40.m v= Brazo 山の高さ 入 T = 指針 図から波長を読み取り、波の速さを求めて, 0.30秒で波が進む距離を考える。 固定端における反射波は,反射がおこらないとしたときの入射波の延長を上下に反転 させ,それを固定端に対して折り返したものになる。入射波と反射波を合成して,観 察される波形(合成波) を求める。 解図から、 =0.20m なので, 2 0.40 0.20 = 2.0m/s 反射がおこらないとしたとき, 0.30秒後 3人に波の先端が達する位置は, x = 0.20+2.0×0.30=0.80m "固定端Aからの反射波は、緑の実線のよ うになり, 観察される波形は入射波と COM 反射波との重ねあわせによって、赤の実 線となる。 正弦波 [m〕↑ 0.10 0 -0.10 y〔m〕↑ 0.10 -0.10 y[m〕↑ 0.10 1 0 -0.10 -0.20 sp 0.40 0.60 0.80 0.20 1 入射波 0.20 0.20 0.40 0.40 反射波 合成波 0.60 x (m) 0.60 入射波の延長 0.80 第Ⅱ章 A0.10 x (mit 0,20 「蝶 ●波動 ① 上下に 0.495 17 反転 変形 ②折り返す 10 1x (m) IXS [m〕 髙 13類題 例題2において, 連続的に正弦波が送り出されるとき, OA間にできる定常 波の腹の位置はどこか。 BE14 頭例頼りにおいて連続的に正弦波が送り出されるとき、端Aが自由端の場合, そば

回答募集中 回答数: 0
物理 高校生

模試の復習をしたいので解説お願いしたいです

〈注意〉 物理の受験者は、次の表に従って4題を解答してください。 選択問題 必答問題 1, 2, 3, 4 物理問題 【物理 必答問題】 1 次の文章を読み、 後の各問いに答えよ。 (配点30) A 解答は物理の解答用紙に記入してください。 斜面 SPHAL 161052 図1のように、 水平面となす角度が0のなめらかな斜面があり、 斜面上には表面がなめら かな壁 (斜面に垂直に立てられた薄い板)が設置されている。 壁の区間 AB は水平な直線に, 区間 BD は斜面上の点Oを中心とする半径rの半円になっており, それらは点Bでなめらか に接続されている。 点Bは半円の最下点,点Dは半円の最上点である。 壁の区間 AB 上に は,質量mの小球Pと質量Mの小球Q があり、その間にばね定数kの軽いばねを壁の区間 AB に沿って水平方向に置き,PとQをばねの両端にそれぞれ手で押しつけてばねを自然の 長さからxだけ押し縮めた状態で静止させている。 PとQから同時に手を静かにはなすと ばねが自然の長さに戻ったときにP と Q はばねから離れ, その後, Pは点Bを通過した。 ば ねは壁の区間 AB に沿って水平方向に伸び縮みするものとし, Pは常に斜面上を運動するも のとする。 また、ばねから離れた後のQは, 壁に沿って運動し,点Aに達した後,斜面の 外に出るものとする。 重力加速度の大きさを」とし、空気抵抗は無視できるものとする。 QばねんP Mcounomom 壁 図 1 - 2- B 選択問題の出題内容 O (60分) 水平面 C 問1 ばねが自然の長さよりxだけ縮んでいるとき, ばねの弾性エネルギーはいくらか。 問2 ばねが自然の長さに戻ったときの P Q の速さをそれぞれ, Vとする。 ばねが自然 の長さよりxだけ縮んでいるときとばねが自然の長さに戻ったときについて, P, Q 全 体の運動量の水平成分が保存することを表す式を答えよ。 問3 問2のはいくらか。 m, M, k, x を用いて表せ。 ただし、 解答欄には結論だけでな 考え方や途中の式も記せ。 点Bを問2の速さで通過したPは, 壁の内側に沿って斜面を上昇し, ∠BOC=90° と なる点Cを通過した後, 点Dから飛び出した。 問4Pが点Cを通過するとき,Pの重力による位置エネルギーはいくらか。 ただし, 点 Bを通る水平面を重力による位置エネルギーの基準面とする。 mor 9m9 問5 Pが点Dを通過するときの速さを、 問2の”およびr, 9, 0 を用いて表せ。 問6 Pが点Dを通過する直前に,Pが壁の内側から受ける力の大きさを, 問2の”およ ぴr, m, g, 0 を用いて表せ。 の最小値を求めよ!!! 問7 Pが点Dを通過するための問2の』の最小値を求めよ。 点Dから飛び出したPは, 壁の区間 AB上のある位置に到達した。 CAME 問8点Dから飛び出したPが到達した, 壁の区間 AB上の位置の, 点Bからの距離の最 小値を求めよ。 -3- 物 理

回答募集中 回答数: 0