学年

教科

質問の種類

物理 高校生

(1)の解き方も理解できるんですが、僕はこの問題解く時に先に(2)といてから(1)を求めようと思い、 (2)で角速度が4と出たので (1)をω=T分の2π(1周で回転する角度)の式に当てはめたら答えが会いませんでした 何故か分からないので教えて欲しいです

C D No. Date Av 指針 糸の張力が等速円運動の向心力の役割をしている 2πr 解答(1)等速円運動の周期の式「T= V よりT= 2×3.14×0.50 2.0 ≒ 1.6s (2) 等速円運動の速度の式 「v=rw」 より -=4.0rad/s V 2.0 @=L r 20.50 (3)等速円運動の加速度の式 「α=rw'」 より α = 0.50×4.02=8.0m/s² 第4章 等速円運動慣性力 31 基本例題 12 等速円運動 >>44,45,47,48 なめらかな水平面上の点に, 長さ 0.50mの軽い糸の一端を固定し,他端に質量 1.0kgの物体をつけ, 速さ 2.0m/sの等速円運動をさせた。 (1) 等速円運動の周期 T [s] を求めよ。 (2) 物体の角速度w [rad/s] を求めよ。 (3) 物体の加速度α 〔m/s²] の向きと大きさを求めよ。 (4) この運動を続けるのに必要な向心力 F〔N〕 の向きと大きさを求めよ。 (5) 糸が18N までの張力に耐えられるとするとき, 最大の角速度ω' 〔rad/s] を求めよ。 (5) 角速度が最大のとき F=mrw=18 Mising 基本例題 13 慣性力 一定の大きさの加速度αで進行中の電車の天井から 質量mのおもりを糸でつるした。 電車内の人には,糸 が鉛直方向から角度0傾いて静止しているように見え た。 重力加速度の大きさをgとする。 (1) 電車の加速。 適向きのどちらか 0 向きは円の中心点0を向く。 (4) 等速円運動の向心力の式「F=mrw²」より F = 1.0×0.50×4.0² = 8.0N 向きは円の中心点0を向く。 ( 0.5 a OKASE が成りたつ。 F = 1:0×0.50×ω^=18 よってω^2=36 ゆえにω' =6.0rad/s 人物体 20m (5 ア 51,52,53,54 ウ

解決済み 回答数: 1
物理 高校生

コンデンサー 電位 (5)です 解説にある、 「S1,S2を開閉しても変化しない」 ということの意味が分かりません 教えて欲しいです🙏🙏

必修 基礎問 72 コンデンサーのつなぎかえ 図のように, 3個のコンデンサー C1, C2, C3, 2個の電池 E1, E2, 2個のスイッチ S1, S2からなる回路がある。 3個のコンデン サーの容量はすべてCであり, 2個の電 池の起電力はともにVであるとする。 は 162 HH ●電荷保存の法則 孤立部分の極板電 荷の和は保存される。 式の立て方の手 順は, ① 孤立部分を見つけ, 変化前の電荷 を確認する。 E₁ じめの状態では,各スイッチは開いており、各コンデンサーに蓄えられた電 荷は0 とする。 また,点Gを電位の基準 (電位0) とする。 1. スイッチ S1 を閉じた。 点Xの電位は(1) れた電荷は (2) である。 2.次に, スイッチ S」 を開き, スイッチ S2を閉じた。 点Xの電位は(3) (V) C2= Point 43 着目する極板の電荷: Q着目= C(V 着目V 相手) (0) である。 3. さらに,スイッチ S2 を開いて, スイッチ S, を閉じた。 点Xの電位は 電池 V (4) である。 4. このようなスイッチ操作を繰り返したとき, 点Xの電位は (5) に近づ く。 (上智大) 精講 ●極板電荷 コンデンサーの極板 A, B の電位をそれぞれ VA, VB, コンデンサーの電気容量をCとすると, それぞれ の極板の電荷QA,QB は右図のようになる。 すな わち,着目する一方の極板の電位を V 日, 向かいあう他方の極板の電位をV相手 QA=C(VA-VB) とすると, G コンデンサー C2 に蓄えら S2 (VA) E2- AB 接地点 ( 電位0) (V: 仮定) (VB) -QB=C(VB-VA) 「孤立部分 ② 回路の電位を調べ, わからないところは仮定する。 孤立部分のすべての極板電荷を求め, 電荷保存の式を立てる。 3 ●回路の電位 原則 (i) 接地点を定め, 電位の基準 (電位0) とする。 (i) 一つながりの導線は同電位である。 素子の両端の電位差 (i) 電池正極側は負極側より電位がVだけ高い。 Q (Ⅱ) コンデンサー: 電荷が正の極板から負の極板の向きにだけ電位が下がる。 : () 抵抗 電流の向きに RI だけ電位が下がる (電圧降下)。 着眼点 コンデンサーにつながる抵抗 (十分に時間が経過した場合) 電流 は 0抵抗の両端は同電位 (1),(2) コンデンサー C1, C2は直列で,電 1/12cv-/12/cr 解説 気容量が等しいので,C1, C2 の電圧は 11 となる。 よって, 点Xの電位は, C2 の電圧と等し いから, 2=1/12/1 U₁² よって, 2 の電気量 Q2 Q2=(1/2)=1/2CV (3) 点Xの電位をV」 とすると, コンデンサー C2, C3のX側 の極板電荷の和が保存されることより, 11 0+12CV=C(Vi-V)+CV よって, Vi=201 (4) スイッチ S1 を閉じる前, コンデンサーCのX側の極 板電荷は12CV, C2のX側の極板電荷は 12 CV である。 よって、点Xの電位を2 とすると, 電荷保存の法則より、 -1/12CV+242CV=C(u2-V) + Cu 5 8 (5) スイッチ S1, S2 を開閉しても変化しないことから, S1, よって, u2= V S2を同時に閉じた場合と同じ状態になる。 点Xの電位を V とすると,電荷保存の法則より、 0=C(V-V) +C (V-V) + CV よって、a=2 3 (1) 2/1/201 V (2) 12/2CV (3) 2 200 31 ト ¹-CV C(V-V) -C(V-V) (V) (V.) 2CV1 T-CV₁ T-i/cr -CV 2 G (0) G (0) -C(M2-V) C(M2-V) (V) (V) 2 (5) V 3 .X (u) _Cu FCM2 DE CV- G (0) CV. G(0) (V) 19. 電場 コンデンサー 163 第4章 電気と随気

解決済み 回答数: 1
物理 高校生

電気の問題です。 黄色マーカーで引いたところの解説をお願いします

150 第4章 電気と磁気 *** 117 【10分 16点】 XXXX] 図のように電気容量 Qのコンデンサー A, B と起電力Vの電池を接続した回路が ある。 切り替えスイッチの操作によって, a またはb側へ2個のスイッチが同時に切 り替わる。 最初, スイッチはa側に倒してあり, コンデンサーBには電荷は蓄えら れていない。 b a C b Ta 問1 コンデンサーAに蓄えられている電気量Qはいくらか。 だ ① V ②CV ® CV @ 2CV 2 :B CV2 66 2 次に,スイッチを b側に倒す。 図のコンデンサー A,Bの上側の電極板に蓄え られている電気量をそれぞれ QA, QB とする。 これらとQとの関係として正しいも のを選べ。 C ① ^ =Q ②9B = Q 3 9A-9B Q 4 9A + 9B=Q 59A-9B=2Q 6 9A + 9B=2Q 13 問2の状態において, 電池および二つのコンデンサーのつくる閉回路に対し て,どのような関係が成り立つか。 ① V=lA+9B_ ②v=lA_9B 3 V=-9^+98 4 V=qAC+qBC ⑤V=qC-4BC ⑥V=-q^C+qBC §3 コンデンサー ...... と何回も繰り返し切り替える。 コンデンサー 月4 スイッチをa→b→a→b Bに蓄えられる電気量は, スイッチをb側へ倒す回数とともにどのように変化する 電気量 電気量 1 L 2 2 ① 1 3 3 4 4 回数 回数 電気量 電気量 2 2 ② 3 4 4 回数 34 回数 151

回答募集中 回答数: 0
物理 高校生

物理の磁気の問題です 黄色マーカーで引いたところの解説をお願いします

188 第4章 電気と磁気 §9 ** 147 【12分 ・20点】 XXXXXX 2枚の同じ大きさの金属板A, B を d離して平 行に並べる。 座標系を図のようにとる。 軸方向の 金属板の長さは である。 金属板Bを接地し, 金属 板Aに正の電位Vを与え, A,B間に一様な電場を 作る。 電子がx軸に沿って A, B間に入射し, 座標 軸の原点0を速さで通過する。 電子の質量をm ○電荷を一とする。 電子によって金属板に誘導され る電荷や, 電子の運動に及ぼす重力の影響は無視す る。 問1 金属板の間で電子が受ける力の大きさFはい くらか。 ①ev 問2 ① 荷電粒子の運動 F ① -t m @v+ Ft m 01/01/ ② 3 のFを用いて表せ。 成分 : 1 z成分: 2 9 ひ e V d 2= 4 ③ 2 eVd また,この力はどちらを向くか。 2 ① x軸の正の向き (2) y軸の正の向き ③軸の正の向き ④軸の負の向き ⑤y軸の負の向き 6 z軸の負の向き 原点Oを通ってから時間t後,電子の速度の成分, 成分はいくらか。 問1 V. e F (5 -t Vd e また, 加える磁場の磁束密度の大きさはいくらか。 V Vd (5) vd V F (3 4 v-- -t m m 問3 金属板の間で電子が描く軌道を面へ射影したものを、 問1のFを用いて表 せ。 Fx 2 Fx Fx ① z= F 2m (モ) (3 ²=- 2mv 2mv 2m v 問4 電子が金属板に衝突せずに,右端z=l, z=s に達した。電子が金属板の間を 通過する間に,その運動エネルギーはどれだけ増したか。 問1のFを用いて表せ。 ① Fl ②Fs ③ F(l+s) 4 F(l-s) 問5 電場はそのままで, 金属板の間に一様な磁場を,ある座標軸方向に加え,『軸 に沿って入射した電子をそのままæ軸方向に直進させるには、磁場をどの向きに 加えればよいか。 1 解答群は問1 2と共通) y Vv d 2 O 2 44 V ed で A B ²- til-15 E 対磁ので FF

回答募集中 回答数: 0
物理 高校生

物理の磁気の問題です。 黄色マーカーで引いたところの解説をお願いします

180 第4章 電気と磁気 ★★ **140 【10分・16点】 XXXX 図のように, 自己インダクタンスLのコ イル, 抵抗値Rの電気抵抗, 電気容量 Cの コンデンサーを起電力 E の直流電源に接続 し 回路の特性を調べた。 直流電源およびコ E イルの内部抵抗は無視できるものとする。 0 A (4 R S₁ スイッチ S2 を開いたままで, スイッチ SL を閉じて, 十分に長い時間がたった状態について考える。 問1 コンデンサーに蓄えられた電荷はいくらか。 ①1/23CE ② CE ③ 1/12 CE2 ④ CE2 ⑤/12 LE ⑥ LE コンデンサーを充電し終わった後, スイッチ S を開き, 次にスイッチ S2 を閉じ ると,コンデンサーとコイルから成る電気振動回路ができる。すなわち, 充電され たコンデンサーの電荷はコイルを通し放電され, 振動電流が流れ始める。 ①1月 1 問2 スイッチ S2 を閉 (2 じた時刻を t=0 とす m AAA t るとき, コンデン サーのb点側の電荷 Qの時間変化を表す グラフはどれか。た だし, グラフの縦軸 はQを表すものとす る。また, マイルに 0 流れる電流の時間 WIN 変化を表すグラフは どれか。ただし,電流は a点からb点の向きを正とし, グラフの縦軸はiを表すも のとする。 Q のグラフ 1iのグラフ 2 問3 電気振動の周期はいくらか。 0 T√LC 22 T√LC T√LC 問4 インダクタンスLのコイルに電流Iが流れている場合, このコイルに蓄えら れているエネルギーは 1/12 L12 で与えられる。これを用いて,この回路に流れる振動 1 2T LC 電流の最大値はいくらか。 0 EVE EVEⓇ CE EVE E. ED C a IS₂ mm b IC §ε 図 に、 に時 何と れ (2 2 問3 問4 は ① to

回答募集中 回答数: 0