学年

教科

質問の種類

物理 高校生

この問題の(3)で、 わたしはビルの高さを求めるのなら、 鉛直投げ上げの公式v=v0t−½gt²の式から出た答え14.7から、(1)で出た答え4.9を引く必要があるのかなと思ったのですが、なぜ引かないんですか? (投げ上げの公式で出た答えは、ビルの高さ+投げ上げた高さですよ... 続きを読む

基本例題 5 鉛直投げ上げ 基本問題34,35,36,37 ある高さのビルの屋上から、 鉛直上向きに速さ 9.8m/sで小球を 投げ上げたところ, 3.0s 後に地面に達した。 重力加速度の大きさを 9.8m/s2 として、 次の各問に答えよ。 9.8m/s (1) 小球を投げ上げてから最高点に達するまでの時間と, 屋上か ら最高点までの高さを求めよ。 (2) 小球が地面に達する直前の速さを求めよ。 (3) 地面からのビルの高さを求めよ。 指針 ビルの屋上を原点とし、 鉛直上向き にy軸をとって,鉛直投げ上げの公式を用いる。 投げ上げられた小球が最高点に達するとき,その 速度は0となる 。 解説 (1) 速度が0となるときが最高点 になる。 求める時間t[s] は, 「v=vo-gt」 から, 0=9.8-9.8xt\mt=1.0s 求める高さを y〔m] とすると, 地面 負の符号は,速度が鉛直下向きであることを表 している。 (3) 求める高さは,投げ上げてから 3.0s後のy 座標 y〔m〕の大きさである。「y=vot-12gt-」 2\m0. から, y2=9.8×3.01 ×9.8×3.02=-14.7m m0 これは,屋上を原点としたときの地面のy座標 である。したがって、ビルの高さは15m T 「y=vot-1/2gt2」から、 y=9.8×1.0 11/13× ×9.8×1.02=4.9m (2) 求める速さは,投げ上げてから3.0s後の速 さである。 「v=vo-gt」から, Point 軸の原点を地面にとるとは限らない。 屋上を原点にとって、 鉛直上向きを正としてい るので、地面の座標は負の値で表される。 v=9.8-9.8×3.0=-19.6m/s 20m/s

解決済み 回答数: 1
物理 高校生

(2)のθが大きいほど転倒しにくいってどういうことですか?θが大きくなるほど傾きが大きくなって倒れるイメージじゃ無いんですか?教えてください🙇

0.20 TO 0.10 7 20 0.2 Fo - 1 FO=5ON [ 0.20 18 図のように、直方体を傾けてから静かにはなす。 底面の横の長さを [m],底面から 重心Gまでの高さをん [m] とし, 重心Gは直方体の中心軸 (図の破線) 上に、 あるとする。 (1) 直方体をある角より大きく傾けると転倒する。 その角をんとするとき, 取する扉 Nemgつりあう taniをα hで表せ。 (2) 直方体が転倒しにくいのは、重心の位置が高い場合か、低い場合か。 理由とともに説明してみよう。 地面に接して いないかんさつはない a J a (1) tan- h (21)が大きいほど転倒しにくいので tangが大きいほど転倒しにくい tongはんに反比例するので hが小さいほど倒れにくい 6 剛体のつりあい(p.101~103) 長さ/ [m], 質量m [kg] の一様な棒ABがある。 棒のA端をちょうつ がいで壁につけ, B端は軽い糸で鉛直な壁の1点Cに結びつけて、 棒が 水平と30°をなすように固定した。このとき, B, C を結ぶ糸は水平で つりあっている。重力加速度の大きさをg [m/s] とする。 C 1sin 309 (1)糸が棒を引く力の大きさ T [N] を求めよ。 16 130 いから棒にはたらく力の水平成分の大きさ FA [N] と A FA ing costo 8 転倒 高さ0. 面にそ (1) 分 用 9考えて (4) 図の きに の (2) あ

解決済み 回答数: 1