学年

教科

質問の種類

物理 高校生

(1)なぜ3枚目のように求めてはいけないのですか?

演習 8-2 図のように, ばね ばね定数k) の一端を天井に固定し、他端に小物体(質量 mg だけ伸びたところでつり合った (重力加速度の m) を接続すると, ばねが k 大きさg). ばねが自然長となる小物体の位置を原点として, 鉛直上向きにx軸 を定め, x軸に沿った小物体の運動を考える. 小物体の位置を座標xを用いて表 し、速度をv, 加速度をaと記す. mg の位置から,x=0の位置までゆっくりと運ん (1) 小物体に外力を加え x=- k だ.この間の外力の仕事 W を求めよ. 時刻 t=0にx=0の位置で, 小物体を静かに放した. (2) 運動方程式より k mg - - /h2² ( x + m²) m k ma=-kx-mg となる. 運動を時間追跡し, その結果を用いて, v²をxの 関数として表せ. (3) 運動エネルギーの変化が, 弾性力と重力によってされた 仕事に等しいことを用いて, ぴとxの間の関係式を作れ. (4) 運動エネルギーと弾性エネルギーの和の変化が,重力に よってされた仕事に等しいことを用いて, v2とxの間の関 係式を作れ. (5) 運動エネルギーと弾性エネルギーと重力の位置エネル ギーの和が保存することを用いて, v”とxの間の関係式を 作れ. .. a=- ooooooo 方針 (1)は仕事の計算. 外力を求め, 仕事の定義に従って計算すればよい. 一方で, 外力以外に現れる力は,重力と弾性力のみであるから, エネルギー収支から仕 事を逆算することもできる. (2)以降は,単振動であるから、時間追跡もエネルギーでの扱いもできる. そ こで,演習8-1 と同様に,指示に従って各手順を確認しておく. よって、仕 物体と に

未解決 回答数: 1
物理 高校生

解き方を教えてください。丁寧目に書いてくださると有り難いです。

pa -×0= 0 M3 X; = r cos 0 prdrd0 = ; p r2 dr [sin 01 = cos 0 d0 = =x pa3 ×0=0 「M3 1 p r sin 0 prdrd0 = M r2 dr M. [- cos 0] = Yc = sin 0 de = *y よって、重心は。= (0,0) 重心の計算(多重積分) *例題5質量がMで、密度が一様な、底面の半径a、高さが bの 円錐の重心 a-fe r dr M = pdxdydz = de dz = cb ca- r2r X; = r cos0 pr dO dr dz = …= 0 = 0 =x rb ra- r2m 1 Yc = TT r sin 0 pr d0 dr dz = … = 0 cb ca- c2r ZG = (宿題) z pr de dr dz = …→ JaJJA… まとめ * 大きさのある物体の重心を定義して、重心の位置を計算した。 * 地上での重力が大きさのある物体に働く場合、物体の各点で重力が働動くた め、つり合いを議論するとき、その重力の総和を計算する必要がある。 * 大きさのある物体に働く重力の総和は、その物体の重心に全ての重力が働 いた場合とつり合いの式は同じになる。 【宿題11質量M、密度が一様で十分に薄い2辺の長さがaの 直角に等辺三角形の重心を求めよ a a 【宿題2]質量M、密度が一様で十分に薄い半径aで2辺の間 の角が45度の扇型(円を8等分したもの)の重心を求めよ 【宿題31質量M、密度が一様で底面の半径がa、高さが の円錐の重心を求めよ。 (45° a * 宿題1、2、3を解きレポートを提出してください。 締め切りは4月24日の23時59分です。 補足:ベクトルの内積 A-B * AとBのなす角0、大きさ4,B 向きを持たない A.B= AB cos 0 ベクトルのx成分,y成分,z成分 A, = A-e, A, = A· ēy. A-B= A,B,+ AyBy +A,Bz A, =A-。 Ax x軸 ,,。:単位ベクトル = (1,0,0), é, = (0,1,0), é, = (0,0,1) |= | = le|=1, = ,.。 = é,. é, = 0 *分配法則:A-(B +¢) = A· E+ A-¢は成り立つので、 A-B= (A,,+ Ayé, + Azē,). (B,ē, + B,é, + B,ē.) = AxBx + A,B, + A,B。 12

回答募集中 回答数: 0
物理 高校生

(c)がわからないです。 誰か教えてください。//

W V=ー=DvBl 答 4 4. この紙面に垂直で表から裏に向かう一様な磁場を 考え、その磁東密度をBとする。磁場に垂直な長 方形の導線 abcd を設置して、ー辺 be を速さvで 右側へ動かすとする (図1参照)。 これについて下 記の問いに答えなさい。 速さvで磁場内を移動している導線 bc は起 電力V= vBI の電池と同等である。 図2の電 池の電圧をV=vBI とすると、 図1と図2は 同等である。したがって、 電流はc→d→a→b の向きに流れる。 荷電粒子qがbからcへ移動するのは磁場 からF= qvBの力を受けるからである。 した がって、図1では、導線の運動エネルギーが 磁場を介して起電力を生み出していることが 分かる。図2では電池の化学エネルギーが起 電力の源である。 答 d C c' a b b' d C 図1:時刻において、可動導線は bc の位置にあった とする。破線b'cは時刻! + Ar における可動導線の位 置を表している。 V (a)辺be 上の正の電荷qを帯びた自由荷電粒子 が磁場から受けるカFの大きさと向きを求 a b めよ。 図 2: 解答 Fは次式で与えられる。 (c) 荷電粒子が cdab 間を移動している最中は、 電 気エネルギーは磁場から荷電粒子に供給され ないことを確かめなさい。 つまり、この区間 では、荷電粒子の移動方向とローレンツカは 常に直交していることを示しなさい。 F= gixB すとがなす角はェ/2であるから力の大きさ Fは次式で与えられる。 F= qvB…答

未解決 回答数: 1