学年

教科

質問の種類

物理 高校生

物理のエネルギー保存則の問題です。 この問題の(2)は等加速度直線運動の公式を使って解くことは出来ないのでしょうか?? 等加速度直線運動の公式は摩擦があると使えないということなのですか…?? 教えていただきたいです!!

34 力学 [11] エネルギー保存則 質量mの小球Pと3mの小物 体Q を糸で結び、Qを傾角30°の 斜面上の点Aに置き、糸を斜面 と平行にし、滑車にかけてPを つるす。 斜面は点Aの上側では 滑らかであるが、下側は粗く、 Qとの間の動摩擦係数は 1/3で P m Vo +1 Vo 3m → C 30° ある。Pに鉛直下向きの初速vo を与えたところ, Qもひで点Aから動 き出した。 重力加速度をgとし エネルギー保存則を用いて答えよ。 ((1) Q の達する最高点Bと点Aとの距離はいくらか。 (2) はやがて下へ滑り点Cで止まった。 AC間の距離Lはいくらか。 Level (1) ★ (2) Point & Hint Pの重力 mg よりもQの重力 の斜面方向の分力 3mg sin 30° の方が大きいので、静かに放せ →ばQ が下がりPが上がる状況。 運動方程式でも解けるが、エ ネルギー保存則で解かなければ ならないし、そのほうが早く解 ける。 !!! (1) 摩擦がないので力学的エネ Base 力学的エネルギー保存則 12m+位置エネルギー=一定 ※位置エネルギーには、重力の位置エ ネルギー mgh やばねの弾性エネ ルギー -hx2 などがある。 摩擦がないとき成り立つ。 厳密には 非保存力の仕事が0のとき成り立つ。 ルギー保存則が成り立つがPとQが糸を通して力を及ぼし合い、エネルギーの やり取りをしているので, PやQ単独では成立しない。 全体(物体系)について扱 うこと。運動エネルギーと位置エネルギーの総量が保存されるが、失われたエネ ルギー=現れたエネルギーとすると式を立てやすい。 (2) 元の位置に戻ったときの速さをまず押さえたい。 その後は摩擦があるので、摩 擦熱を取り入れ、エネルギー保存則を立てる。 摩擦熱=動摩擦力×滑った距離

未解決 回答数: 1
物理 高校生

物理の運動方程式の問題です。 この問題の(5)で、垂直抗力Nを求めるときに、写真3枚目の図から、N=Mg/2という風に、力のつり合いで解くとダメな理由を教えていただきたいです… 力のつり合いが成り立っていないからでしょうか?直線に垂直な方向ではつり合っているようですが、力の... 続きを読む

26 力学 8 運動方程式 物体A(質量 M) およびB(質量)を 糸の両端に結び, A を滑らかな斜面上にお き, Bを斜面の上端に取り付けた滑車を通 してつり下げる。 いま, Aを手で支え,そ の水平な上面に物体Cをのせてから,Aを 静かに放したら,AはCをのせたまま斜面 に沿って加速度(gは重力加速度)で滑 りおり始めた。Aが距離だけ進んだとき, C A B CをAの上から取り去ったところ,Aはその後一定の速度で滑りおり ていった。 (1) 斜面が水平面となす角はいくらか。 (2) 加速度運動をしているときの糸の張力はいくらか。 (3) 等速度運動をしているときのAの速さはいくらか。 (4) 物体 Cの質量はいくらか。 (5) 加速度運動をしているときCがAに及ぼす鉛直方向の力はいくら か。 (6)加速度運動中, CとAの間に滑りを起こさないためには, 両者間 の静止摩擦係数はいくら以上でなければならないか。 (兵庫県立大) Level (1)~(4)(5),(6) Point & Hint (1) C を取り去った後の運動に目をつける。等速度運動は力のつり合いのもと で起こる。 (2)Bに注目する。 (5) 力は2物体間で生じ, それぞれが受ける力の大きさは等しく, 向きは逆向きで あるという作用・反作用の法則を意識して,Cに注目する。 (6)AC 間に滑りはないから, AC間の摩擦は静止摩擦。

未解決 回答数: 1
物理 高校生

物理基礎の力のつり合いの問題です。基本例題8で、ボールに働く力についてで、いくつか質問があります。 ①Fはバネを右に引いた力と同じですか? ②ボールを右に引く力が働いたら、その反作用でボールが左にバネを引く力がないのはなぜですか? 作用反作用がいつ働くのかがいまいちわかって... 続きを読む

例題 解説動画 基本例題8 力のつりあい 基本問題 58,596465666768 軽い糸の一端を天井につけ、 他端に重さ 2.0Nの小球 をつなぐ。この小球に, ばね定数10N/m の軽いばねの 一端を取りつけ,他端を水平方向に静かに引いた。 糸が 鉛直方向と60°の角をなして小球が静止しているとき 力の ばねの自然の長さからの伸びは何mか。 C 2.0N 10N/m 60° 00000 指針 小球は、重力, ばねの弾性力, 糸の 張力を受けて静止しており,それらはつりあって いる。 ばねの弾性力をF[N], 糸の張力をT〔N〕 と すると, 小球が受ける力は図のように示される。 力を水平方向と鉛直方向に分解し, 各方向におけ る力のつりあいの式を立てる。 これからFを求め, フックの法則を利用してばねの伸びを求める。 水平方向:F- T=0 2 鉛直方向: T 2 --2.0=0…② | 解説 水平方向, 鉛直方向のそれぞれの力 のつりあいから, √3 T[N] √ T(N) 30° 720 [N] 式 ②から,T= 4.0Nとなり,これを式①に代入し てFを求めると, F=2.0√3N ばねの伸びを x[m] とすると, フックの法則 「F=kx」 から, F 2.0√3 x= 2.0×1.73 10 10 -=0.346m 0.5m Point F〔N〕 小球にはたらく3つの力がつりあって いるとき,水平方向と鉛直方向のそれぞれの成 分もつりあっている。 V2.0N 基本例題 9 ばねと作用・反作用 同じばね定数の2つの軽いばね A, B を用意する。 ばね Aの一端を壁に取りつけ, 他端におもりをつるして静止さ せる。一方, ばねBは,その両端にそ して静止 基本問題 71, 72,73 LA 0000000000 [知識] 57. 重さと質量 基本 地球上の重力加速度の大き 大きさを地球上の1であるとして、次の各 (1)地球上での重さが294Nの物体の質量に (1)の物体が月面上にあるとき,その質 (3)(1)の物体が月面上にあるとき,その重 [知識 58. 糸の張力 図のように, 質量 1.0kg のお て静止させた。 このとき, おもりが受ける ただし, 重力加速度の大きさを9.8m/s2 と [知識 59. ばねの弾性力 自然の長さ 0.200mの軽 さが 0.240mになった。 重力加速度の大きさ (1) ばねのばね定数を求めよ。 (2) ばねに質量 5.0kgの物体をつるすと, ヒント ばねの弾性力の大きさは, ばねの伸びに上 思考 60. ばねのつりあい 表は,軽いばねにさ おもりをつるし、ばねの自然の長さからの ものである。重力加速度の大きさを9.8m/s 各問に答えよ。 (1)自然の長さからのばねの伸びx[m]を 弾性力 F〔N〕を縦軸にとったグラフを描い (2)

回答募集中 回答数: 0
物理 高校生

(4)なぜθ=0°を代入するのですか?

必修 基礎問 62 薄膜の干渉Ⅱ 図1は波長の単色平行光線が, 空気中か らガラスの表面をおおう厚さdの薄膜に、入射 角0で入射したとき, 光が反射, 屈折 (屈折角 ゆ) する様子を示している。 空気と薄膜の境界 面上で反射する光はAA'DEの経路 を進み, 薄膜とガラスの境界面上で反射する光 入 A A' B 0 D 1 空気 B' n2 d 薄膜 22 C n3 ガラス 図 1 はB→B'→C→D→Eの経路を進む。 ここで, AB, A'B' はそれぞれ同 位相の波面である。空気, 薄膜の屈折率をそれぞれ1, 2 とし,n22はガラス の屈折率 n3 より小さいものとする。 (1) 光が点Cおよび点Dで反射するとき, 光の位相の変化量をそれぞれ答えよ。 (2)2つの反射光の光路差をもたらす部分の経路差をd, Φを用いて表せ。 (3)2つの経路から来た光が点Eで弱め合う条件をd, 0, n2, 入 を用いて表 せ。 ただし,m=0, 1, 2, ... とする。 (4) d=1.00×10-7 [m], n2=1.40 として, 白色光 を垂直に入射させた。 反射光のうち干渉で打ち消 し合う波長を求めることにより, 何色に色づいて 見えるか。 必要ならば、 図2の色相環を用いよ。 図2には円周に沿って [nm] 単位で色光の波長 を示している。 この図において,円の中心に対し 770nm 380nm 640nm 赤紫 430mm 橙 青 590 nm 黄 ** 550 nm 490mm 図2 色相環 て向き合っている2つの色光を混合した場合にも, 白色に見える。この これら2色は互いに補色(余色)であるという。 例えば、 白色光から 色が消えると補色の緑色に見える。 (甲南

未解決 回答数: 1
物理 高校生

物理の作図での疑問です! この問題はおもりを皿に乗せているので垂直抗力も考えると思ったのですが、回答を見ると考慮してませんでした!なぜ考えないのでしょうか、、?

必修 基礎問 7 運動方程式 I 図1のように, 水平な台の上に質量 M の 木片を置き, 台の端に取り付けた滑車を通 して, 伸び縮みしない軽いひもで皿と結び, 皿の上に質量mのおもりをのせる。 重力 加速度の大きさをgとして, 以下の問いに 答えよ。 ただし, 滑車はなめらかに回転し、 滑車と皿の質量は無視できるものとする。 木片 I. 木片と台の間に摩擦がない場合の運動を考えよう。 (1) 木片の加速度の大きさを求めよ。 (2) ひもの張力の大きさを求めよ。 Ⅱ. 実際には, 木片と台の間には摩擦がある。 静止摩擦係数μと動摩擦係数μ'を求める ため, おもりの質量m をいろいろと変え て木片の運動を調べ, 次の結果を得た。 (a) m≦m では, 木片は運動しなかった。 (b)m>m では, 木片は等加速度運動を した。 (c)と加速度の大きさαの関係をグラ フにすると, 図2のようになった。 (3) 木片と台の間の静止摩擦係数μ を求めよ。 木片の加速度の大きさ az 着眼点 座標軸は、加速度の方向とそれに垂直な方向にとるとよい。 物理基礎 ■ Point 6 運動を分解して 「静止または等速度運動 力のつりあいの式 加速度運動 運動方程式 おもり 図 1 ●動摩擦力 固定面上の物体では, 運動の向きと逆向きに働く。 その大きさF は,F=μ'N (μ'動摩擦係数, N: 垂直抗力の大きさ) ●着眼点 1.定滑車を介して糸でつながれた物体 の加速度の大きさは等しい。 (右図 4 は微 小時間 4t における物体の変位の大きさ。) 1F)を加えて 木 2. 軽い (質量を無視できる) 糸の張力の大きさ はすべての部分で等しい。 Ax | Ax=a (At) = 解説 I. (1), (2) 木片とおもりの加速度の大きさをαとし, ひもの張力の 大きさをTとすると, 木片とおもりの運動方程式は, 木片: Ma=T おもり:ma=mg-T ......① a A ② (大阪) N T m Mmg_ 0 m₁ m2 m M+m おもりの質量 図2 Mg T mg a (4)m=mz(>mi) のとき, 木片の加速度の大きさはα2 だった。 木片と 台の間の動摩擦係数μ' を求めよ。 ale (センター試験改) ●運動の第2法則 物体の加速度は物体に働く合力に比 例し、物体の質量m に反比例する。 運動方程式: ma = (=F+F2..., F, F, ・・・: 物体に働く力) 運動方程式の立て方 (i) 着目物体を決め、 働く力をすべてかく。 (ii) 直交座標を決めて、各方向での運動を知る (運動を分解する)。 (各座標軸について, 運動の法則を適用する。 ①,②式より,a=M+mg, T= II. (3)m=m のとき, 木片とおもりは動き 出す直前である。 よって, 木片に働く垂直抗 力の大きさをNとすると, 木片には最大摩擦 力μNが働き, 静止している。 ひもの張力の 大きさを T1 とすると, 力のつりあいより [N=Mg 木片: |Ti=UN おもり: Ti = mig ③~⑤式より, μMg=mg ......③ ......④ ....... 5 mi よって、 μ= M Sinto (4) ひもの張力の大きさを T2 とすると, 木片とおもりの運動方程式は, 木片: Maz=T2-μ'Mg .......⑥ おもり: m2d2=m2g-T2 ......⑦ m2g-(M+m2)a2 ⑥ ⑦ 式より (M+m2) a2=m2g-μ'Mg よって、μ'= Mg m (1) g (2) M+m Mmg_ M+m mi (3)μ M (4) μ' m2g-(M+m2)az Mg 18 2. 運動の法則 19

未解決 回答数: 0