学年

教科

質問の種類

物理 高校生

2つ質問があります 1:⑶、⑷の解き方がわかりません 教えてくださいお願いします🙇 2:次高校3年生です。重要問題集のことなんですけど、どの問題も後半が難しすぎて全く解けません。 学校の宿題で出されるので、解いているんですけど、ほぼ赤です。 重要問題集ってみんなスラ... 続きを読む

必解 35. くばねにつながれた物体との衝突〉 M m Vo B A 0 x 図のように、なめらかな水平面上に, 一端が固定さ れたばね定数んのばねが置かれている。 ばねの他端に は質量mの物体Aがつけられている。 初め、ばねは 自然の長さになっており, 物体Aは静止している。 図のように水平方向にx軸をとり, 紙面 に向かって右向きを正とする。 物体Aの初めの位置を x=0 とする。 質量 M (M> m) の物体Bを, 速度vo (vo>0) 物体Aに衝突させた。 物体Aと物体Bは 弾性衝突し, 衝突直後, 両物体は右方向に進み,その後, 物体Aと物体Bはばねが最も縮ん だ後に再衝突を起こした。 ばねは弾性力がフックの法則に従う範囲で伸縮し, また, ばねの 質量,および物体の大きさはないものとする。 初めの衝突の瞬間を時刻 t = 0 とし、 再衝突の起きる時刻を とする。 初めの衝突から再 衝突が起きるまでの間, 物体Aは単振動を行った。 次の問いに答えよ。 必要であれば、円周 率を用いよ。 (1) 初めの衝突直後の物体A, 物体Bの速度をそれぞれ VA, UB とする。 (a) 初めの衝突前後で成りたつ運動量保存の法則を表す式を書け。 Bre (b) VA, UB を,m, M, vo を用いて表せ。 (2) ばねが最も縮んだとき, 物体Aは, x=Lの位置にあった。 L を va, k, m を用いて表せ。 (3) 初めの衝突から再衝突までの間の任意の時刻t (0≦t≦t) における物体A, 物体Bの位置 を XA, XB とする。XA を va,m, M, k, tの中から,XB をUB, m, M, k, tの中から必要 なものを用いてそれぞれ表せ。 (4) ばねが最も縮んだ後,物体Aと物体Bは,x=1/2の位置で再衝突した。この場合の再衝 突が起こる時刻を,m, kを用いて表せ。 [18 広島大 ]

解決済み 回答数: 1
物理 高校生

(6)の高温熱源、低温熱源がどうのこうの というのがわかりません。

容器内の気体の圧力 P, 〔Pa] を求めよ。 3) 容器内の気体の温度 T [K] を求めよ。 この変化における容器内の気体の圧力P [Pa〕 と体積V[m²] の関係を表すグラフをかけ。 ただし, P を用いてい 15) この変化で気体が外部にした仕事〔J〕 を求めよ。 (6) この変化で気体が温度調節器から受け取った熱量Q〔J〕を求め 68.〈気体の状態変化と熱効率〉 (6) [A] 理想気体では物質量が同じであれば, 内部エネルギーは温度 で決まる量であり, 圧力や体積が異なっていても温度の等しい状 態の内部エネルギーは同一である。 このことから, 1molの理想 気体に対するか-V図(図1)に示す状態a (温度 T [K]) から状態 b (温度 T'[K]) への内部エネルギーの変化 4Uab 〔J〕 は,定積モ ル比熱Cv 〔J/(mol・K)] を用いて AUab=Cv(T-T) [9] 気体分子の運動と状態変化 51 68 p 0 数研出版 と表すことができる。 (1) 図1に示す状態 a, b とは別の状態 c (状態aと同じ体積をもち,状態bと同じ温度で ある状態)を考えることで ① 式を導け。 1/3 [B] 理想気体1mol の状態を図2のようにA→B→C→Aと変化 させる。 それぞれの状態変化の過程では, A B 外部との間で熱の出入りがないものとする B→C: 圧力を一定に保つ C→A:体積を一定に保つ ように変化させる。 状態 A, B, Cの圧力, 体積, 温度をそれぞれ (p₁ (Pa), V₁ (m³), TA (K)), (P2 (Pa), V₂ [m³), TB (K)), 〔Pa], V1 [m²], Tc 〔K〕) とする。 また, 定積モル比熱をCv 〔J/(mol・K)] 定圧モル比熱 Cp を Cp [J/(mol・K)],比熱比を y = v 気体定数を R [J/ (mol・K)] で表す。 p P₁ P₂ 図 1 0 C 等温線 V₁ 図2 B (2) 過程A→Bで気体が外部からされる仕事 WAB 〔J〕 を ① 式を用いて求め, その答えを Cv. Cp, Ta, TB, Tc の中から適するものを用いて表せ。 (3) 過程B→Cで気体が得る熱量 QBc 〔J〕 と, 過程C→Aで気体が得る熱量 Qca 〔J〕 を Cv, Cp, Ta, TB, Tc の中から適するものを用いて表せ。 V₂ V (4) 過程B→C→Aで,気体が外部からされる仕事 WBCA 〔J〕 を求めよ。 これと前問の答え とをあわせて考えると, 定積モル比熱 Cv, 定圧モル比熱 C, 気体定数Rとの間の関係 式を見出すことができる。 その関係式を導出せよ。 仕事 WBCA は、 Cv, R, Ta, Ts, Te の中から適するものを用いて表せ。 (5) 図2に示すサイクルの熱効率e を, y, pi Y2 を用いて表せ。 Pa' Vi (6) 図2のサイクルを逆向きに,すなわちA→C→B→Aの順に変化させると、 どのような はたらきをする機関となるか。 これが熱力学第二法則に反しないための条件を含めて、 100字以内で述べよ。 [22 岐阜大]

回答募集中 回答数: 0
物理 高校生

重要問題集85の(3)(4)です。 (3)書いてある言葉の意味は分かります。なぜ1がsinθとルートの間に入ったのかがわからないです。 (4)1行目までしか言ってる意味がわからないです。 受験に物理を使わないので基礎知識がだいぶ欠落しています(>_<) 頑張って理解する... 続きを読む

必解 85. 〈光の屈折〉 図は屈折率の異なる2種類の透 明な媒質1 (屈折率 n) と媒質 2 (屈折率n2) からなる円柱状の二 重構造をした光ファイバーの概念 図であり,中心軸を含む断面内を 光線が進むようすを示している。 中心軸に垂直な左側の端面から入射した光線が、 媒質の境界で全反射をくり返しながら反対 側の端面まで到達する条件を調べてみよう。 空気の屈折率は1としてよく, 媒質中での光損 失はないものとする。 また媒質2の内径および外径は一定であり, 光ファイバーはまっすぐ に置かれているとしてよい。 中心軸 L 媒質2 媒質 1 媒質 2 B (1) 左側の端面への光線の入射角を0とするとき COSα を0と」 を用いて表せ。 (2) 光線が光ファイバー内で全反射をくり返して反対側の端面に到達するための sin0 に対 する条件を 1 2 を用いて表せ。 ただし,0°<0<90°とする。 (3)0° <890°のすべての入射角0に対して境界 AB で全反射を起こさせるための条件を nとn2 を用いて表せ。 (4) 光ファイバーの全長をL, 真空中での光の速さをcとするとき (2)の条件を満 左側の端面から反対側の端面に到達す7 土地 ミ

回答募集中 回答数: 0
物理 高校生

(1)で電流がE→C1→R2→C2→Eの向きで流れるのは何故ですか?

94 15 直流回路 必解 115. <コンデンサーを含む直流回路> 抵抗 R1, R2, R3, コンデンサー C1.C2, スイッチ S1, S2 および 電池Eからなる回路がある。 R1, R2, R3 の抵抗値はそれぞれ2Ω, 4Ω 6Ωであり, C1, C2 の電気容量はともに4μF, E は起電力が 12V で内部抵抗が無視できる電池である。 最初 S は開いており S2 は閉じている。 (1) S1 を閉じた瞬間に R2 を流れる電流はいくらか。 (2) S1 を閉じて十分時間がたったとき R2 を流れる電流はいくらか。 (3) (2) のとき, C に蓄えられた電荷はいくらか。 (4) 次に, S と S2 を同時に開き, 十分時間がたった。 そのとき C に加わる電圧はいくらか。 (5) (4) のとき, R1 で発生する熱量はいくらか。 [東京電機大改] C1 S2 R3 S1 R₁ R₂ 必解 116. <電球とダイオードを含む直流回路〉 図1のように,電球, ダイオード, 抵抗値 20Ωの抵抗, および電圧 値を設定できる直流電源からなる回路を考える。 電球は図2のような 電流電圧特性をもつ。 ダイオードは図3で示すように,電圧 1.0V 未 満では電流 0A, 1.0V以上では電流 [A] = 0.20×(電圧 〔V〕 -1.0)の 電流電圧特性をもつ。 次の問いに答えよ。 (1) 電球の電流電圧特性に着目する。 電球の抵抗値は一定ではなく, 電圧や電流の値によっ 抵抗 20Ω 本 て異なる。 電球の抵抗値が26Ωになるときの, 電球に加わる電圧を有効数字2桁で求め よ。 S ダイオード 図1 電球 電源

回答募集中 回答数: 0
物理 高校生

物理重要問題集より単振動です 写真の4).5)青線部分の2はどこからでてきたのですか? 教えて欲しいです

A 必解 52. <2本のばねによる単振動〉 図のように,なめらかな水平面上に質量mの物体Pが同 じばね定数んをもった2つのばね A, B とばねが自然の長さ にある状態でつながっている。 水平面上右向きにx軸をとり, このときの物体Pの位置をx座標の原点とする。 物体PをばねAのほうへ原点Oよりaだ けずらしてからはなす。 このとき物体Pは単振動する。単振動は等速円運動のx軸上への正 射影の運動であるといえる。 時刻 t=0 において、物体Pはちょうど x座標の原点Oを正の 向きに向かって通過した。 ばねの質量はないものとして、次の問いに答えよ。 (1) 時刻t における物体Pの位置xおよび速度を等速円運動の角速度を用いて表せ。 (2) 時刻t において物体Pが位置xにあるときの加速度αを, ω と x を用いて表せ。また,2 つのばねAとBから受ける力Fを, kとxを用いて表せ。 B 1000 P P800000 120 (3) 物体Pが x = α に達してから, 初めて原点を通過するまでの時間 to と, 初めて x 12/24を通過するまでの時間を,kとmを用いて表せ。 (4) 物体Pの運動エネルギーKの最大値とそのときの位置, およびばねの弾性力による物体 FELS ULL Pの位置エネルギーUの最大値とそのときの位置を表せ。ただし,ωやTを用いないこと。 pl (5) 物体Pが単振動しているときの速度と位置xの関係を求め, vを縦軸に,xを横軸にと ってグラフに示せ。このとき座標軸との交点を,a,kおよびm を用いて表せ。 また,物 体Pが時間とともに図上をたどる向きを矢印で表せ。 [香川大 改〕

未解決 回答数: 1
物理 高校生

重要問題集をやっていてふと気になったので質問します。運動量保存則において速度はもともとベクトルですからですから±も含んでいると認識しています。しかし、写真の問題の解答では元の運動量保存則の文字の前に➖がついていますが、これはどうしてですか?

36. 〈水平面上での2物体の衝突〉 なめらかな水平面上に、同質量 m[kg] の2個の小物体AとB がある。 図に示すように、静止しているBにAを左側から速さ V[m/s] で衝突させたところ, 衝突後のAの速度ベクトルは,大 きさは VA [m/s]で,衝突前のAの速度ベクトルとなす角は [rad] であり,Bの速度ベクトルは, 大きさは Ve〔m/s] で, 衝突前のAの速度ベクトルと なす角はβ〔rad] であった。 B A V AVA & B B VB (1)まず,衝突前のAの運動方向と平行な, 運動量の成分について考えよう。衝突前と衝突後 で, 小物体AとBの運動量成分の和が等しいことを表す式を書け。 (2)次に,衝突前のAの運動方向と垂直な, 運動量の成分について考えよう。衝突前と衝突後 で,小物体AとBの運動量成分の和が等しいことを表す式を書け。 (3) VA と VB をそれぞれ, V, α, β を用いて表せ。 2 (4) 特に, α+B=7 であった場合, 4E 〔J〕 を求めよ。 ただし, 衝突前の小物体AとBの力 学的エネルギーの和を E 〔J〕, 衝突後の小物体AとBの力学的エネルギーの和をE' [J] と したとき 4E=E'-E である。 [15 名古屋工大]

未解決 回答数: 1
物理 高校生

高校物理過渡現象の問題です。 (6)の考え方は一通り理解できたつもりなのですが、二つのコンデンサが等電位になっているのに、電流が流れ続けるのが少し引っかかりました。図cを見る限り、電位差がなくなった後、コンデンサ3に電流が流れ込みいっぱいになったら今度はコンデンサ2に電流が... 続きを読む

法則ⅡIより / Vo+VL-0=0 よって VL=-12/Vo *B コイルに加わる電圧の大きさは 1/2vo AIL Vo (5) VL-24 だから12/2014/1 4t よって 12 4t 2L また、自己誘導が電流の流れを妨げるから、 電流は 0 AIL (6) コンデンサー C3 に流れこむ電流Icの変化は, 電気振動で示されるから, ス イッチ S2 を閉じた時刻を t=0, 電流の最大値を IM として, 図cのように表 される。 直列回路より電流は共通であるから, C3 に流れこむ電流が最大の とき, コイルに流れる電流も最大となる。 電流が最大のときは電流変化が 0 よりコイルの電位差が0であるから ※C, C2, C3 の電圧は等しく、その電圧 をVとすると, 電気量の保存より 12/23CV +0=CV+CV よってV=1/2vo ゆえに,C』に蓄えられている電気量Q3は Q321/Cro エネルギー保存より 1 c. (v.)² +0=1 c · (v.)³×2+LIM² LIN²=12/2CV32 よってIw=1/12/0 C 4 L L 12/12/10 =1/12/0 +CV. C₂ 1/12 Cro 図 d Ic IM O m VL 図 b ◆B コイルの左側が高電 位となる。 12/12/0 o(E C30 +CV C2 -CV 0 C3 *C V₁=-Lt AIL 4t fi 図 c AIL -= 0 だから Vi=0 L IM 図e C3 +CV V: -CV 物理重要問題集 151

回答募集中 回答数: 0