学年

教科

質問の種類

物理 高校生

横向き失礼します。 ホイヘンスの定理の証明です。全てわからないので教えてください。

以下の に当てはまる最も適当なものを、 解答群から1つ選んで答えよ。 ある媒質を伝わる波が別の媒質との境界面で屈折するようすは、ホイヘンスの原理を用い、 て次のように説明される。 図のように,媒質1を速さで進む波の波面 AB の一端 A が媒質2との境界面しに達し たとする。その後、波面 AB上の点はAに近い方から次々とLに達し、そこで1を 質2内に送り出す。 AがLに達してからt秒後に波面 ABの端点BがL上の点Pに達した とき,最初にAから出された 1 の波面は,媒質2を進む波の速さをひとして、Aを 中心とする半径2の円周C上まで進んでいる。 屈折波の波面は, L上の各点から少し ずつ遅れて出された 1 に共通に3 ]面になり、図でPからCへ引いた接線PQに相 当する。 波の入射角をえ,屈折角をrとし, sini, sinr の値を図中に書かれた3角形の辺の 長さの比で表すと, sini = 4 となる。したがって、両者の比を0.2 sinr= 5 を用いて表すと, sin i sinr となる。 6 Vi B 媒質1 P 媒質2 L 解答群 1 2 3 4 5 6 ア 疎密波 ア vit ア 反射する BP AB ア ア ア BP AB イ イ イ 素元波 イ 101-0₂\ V₂ V₂t イ 透過する AQ PQ イ AQ PQ ウ 衝撃波 37 | 0₁-0₂|1 I ウ 衝突する AQ AP ウ Dv 101-0₂T ウウ AQ AP V1 D2 エ 定常波 組 ( エ H V₁ 回転する BP AP H BP AP V₂ VI オパルス波 Vit V₂ オ オオ オ 接する オ AB AP AB AP 02² )氏名(

回答募集中 回答数: 0
物理 高校生

(2)の解説 方程式の文字の値をすり替えるって、、、方程式のルール的に完全アウトじゃないですか? これなんでOKなんですか?

56 基本例題 30 絶対値と不等式 次の不等式を証明せよ。 (1) |a+b|≦|a|+|6| (2) |a|-|6|≦|a+bl 指針 (1) 前ページの例題29と同様に(差の式)≧0 は示しにくい。 |A=A2 を利用すると, 絶対値の処理が容易になる。 そこで A≧0, B≧0のとき の方針で進める。また,絶対値の性質(次ページの①~⑦) を利用して証明しても よい。 (2)(31)と似た形である。 そこで, (1) の結果を利用することを考えるとよい。 CHART 似た問題 1 結果を利用 [2] 方法をまねる la+b≧(lal+|6|)² (3) la+b+cl≦la|+|6|+|el ●基本 29 重要 31 A≧B⇔A'≧B'⇔A'-B'≧0 (1) (lal+ b)²-la+b|²=a²+2|a||b|+6²-(a²+2ab+6²) |◄|A³=A² 解答 =2(labl-ab)≧0 |ab|=|a||6| ...... よって 00000 よって la+b≧0, lal +6 ≧0 から la+6|≦|a|+|6| この確認を忘れずに。 別解] 一般に,|a|≦a≦|a|-|6|≦b≦|6| が成り立つ。 | A≧A, |A|≧-A この不等式の辺々を加えて から-|A|A|A| -(|a|+|6|)≦a+b≦la|+|6| したがって la+b|≦|a|+|6| (2) (1) の不等式でαの代わりにα+6, 6 の代わりに - b とおくと |(a+b)+(−b)| ≤|a+b|+|−b| よって |a|≦la+6|+|6| ゆえに |a|-|6|≦la+6| [別解 [1] [a|-|6|<0のとき a+b≧0であるから,|a|-|6|<la+6|は成り立つ。 [2] |a|-|6|≧0のとき |a+b-(|a|-|6|)²=a²+2ab+b²-(α²-2|a||6|+62) =2(ab+lab)≧0 よって (|a|-|6|)≦|a+b² |a|-|6|≧0,|a+b≧0であるから |a|-|6|≦la+b1 [1], [2] から |a|-|6|≦|a+b| (3) (1) の不等式での代わりにb+c とおくと la+b+c)[≦la|+|b+cl la+b+cl≦|a|+|6|+|c| ≦|a|+|6|+|c| -B≤A≤B ⇔|A|SB ズーム UP 参照。 <|a|-|6|<0≦la+bl [2] の場合は, (2) の左 辺, 右辺は0以上であ るから, 右辺20 を示す方

解決済み 回答数: 1
物理 高校生

気体分子運動論の証明についてですが、 写真の青枠の部分に注目すると、N=n/NAより、 気体の状態方程式は、PV=(N/NA)RTと書き換えることができ、この式に、PV= (Nmv²/3)を代入して、 変形していくと、公式である、mv²/2=3RT/2NAという形になります... 続きを読む

のベクトルの書 ところで v2 = 0x2+uy2+uz! より = 0x^2+b2²2+02²2² x,y,z 方向は物理的には同等だから(特にある方向で分子が速いとか遅いと かはないはず) x2 = by2 = 12² よって b2=30x2 ③,④より F= よって Nmv² 3L この結果を状態方程式 PV=nRT= N NA = P=F Nmv2 Nmv2 L-S 3L³ 3 V ⅡI 気体の熱力学 -RT と比べてみれば (PV) Nm NORT これより 1/12m2 2.0T Nmv² 3. 3 NA NA 定数は平均に関係しないから、1/12m/1/2に等しく,分子の運動エネル ギーの平均値を表していることになる。 気体の内部エネルギー 分子の平均運動エネルギー 1/2mv=12/2017.T=12/2kT NA v² めやす ちょっと一言 この式は重要。温度は化学では熱い冷たいの目安に過ぎなかった のが、分子の運動エネルギーで決まっていることがこうして分かった んだ。また, 分子が運動をやめる T = 0 が最も低い温度となることも 示唆されている。 定数 R/NA はんと書いてボルツマン定数とよんでい る。 13 8 2乗平均速度√vは分子の平均の速さにほとんど等しい。27℃ の酸素の v2を求めよ。 酸素の分子量を32, 気体定数を8J/mol・K とする。 内部エネルギーUとは分子の運動エネルギーの総和をいう。 そこで単原子分子からなる気体(以下,単原子気体とよぶ)では U=Nx. 1x1/2mv=N mv=N×32321T=23NRT="2nRT X2 NA NA 何原子分子であれ気体の内部エネルギーは絶対温度 Tに比例することが わかっている。 内部エネルギーは温度で決まる

未解決 回答数: 0
物理 高校生

物体AとBは一定の大きさの加速度で運動してるのに、なぜ問題を解く時に力のつりあいの式を立てることができるのですか?教えてください🙏

次に、図5のように, AとBの位置を入れかえて, Aを板上に置いて手で支えて全体 を静止させてから, A を支えていた手を静かにはなしたところ、 AとBは一定の大きさ の加速度で運動した。 ただし,常に A と滑車の間の糸は水平に,Bと滑車の間の糸は鉛 直になっており,AとBは同一鉛直面内で運動するものとする。 また,A が滑車の位置 に達する直前までの運動について考えるものとする。 1 T 板 Am 4 mg-f mg T. 台 (2) T-f 糸 図 5 A の水平方向についての運動方程式 : Bの鉛直方向についての運動方程式 : 2mg 問7 A,Bの加速度の大きさをα, 糸が A,Bを引く力の大きさを T, A が板から受け る動摩擦力の大きさをfとする。 A の水平方向についての運動方程式, B の鉛直方向 についての運動方程式はそれぞれどのように表されるか。 次の式中の空欄 ア イ に入れる式として正しいものを,下の1~6のうちから一つずつ選び、番号 で答えよ。ただし、同じものをくり返し選んでもよい。 また, A は水平右向きを正, Bは鉛直下向きを正とする。 5, 2mg-T ma= 2ma: 滑車 = T ア イ B 2m 3T-mg 62mg-f 2

未解決 回答数: 1