学年

教科

質問の種類

物理 高校生

⑷でどうしてX軸方向の運動方程式しか成り立たないのか、Y軸方向のことは考えないのかというのと、 どうして重心で考えているのかがよくわかりません

34円運動 万有引力 ◇47. 〈半円形状の面にそった円運動〉 図のように, 半径Rの半円形のなめらかな面を もつ質量Mの台が水平でなめらかな床面上に固 定されている。 半円形の端点Aから質量mの小 A m 0 R 0 物体を静かにはなす。小物体の位置を,小物体とRsing 円の中心を結ぶ線分と水平線 OA がなす角度 0. 0で表す。 また、床面には水平方向右向きにx軸 をとり、半円形の最下点の位置を x=0 とする。 重力加速度の大きさをgとして,次の問いに答え よ。 (1) 小物体が角度0の位置を通過するときの速さ」 を求めよ。 M x 0 (2) このときの小物体が台から受ける垂直抗力の大きさ N と, 台が床面から受ける垂直抗力 の大きさFを,R, M, m, sine, gの中から必要なものを用いて表せ。 また, 横軸に角度 0,縦軸にNとFをとり, Nは実線, Fは破線としてグラフをかけ。 グラフでは, とし、適切な目盛りを振ること。 次に,台の固定を外して小物体をAから静かにはなす。 M = =4 m >+ (3) 小物体が角度の位置を通過するときの速さと,台の速さ Vを,R, M, m, sin 0, X gの中から必要なものを用いて表せ。 このときの小物体の水平方向の位置 x2 と, 半円形の最下点の水平方向の位置 X を R, M, m, cose を用いて表せ。 〔23 電気通信大] 必解 48. 〈ケプラーの法則〉

未解決 回答数: 1
物理 高校生

円運動と単振動にかなり苦手意識を持っていて、何度読んでも何を言ってるのかいまいち分かりません。特に写真の右ページの式変形についてですが、「この式をあの式に代入したらこうなる」というのは分かる、というか見たまんまなので理解出来るのですが、それが何?ってなってしまって自分のもの... 続きを読む

4 データ ③ 周期 Tとその求め方 周期Tとは,単振動に対応する円運動が1周回るのにかかる時間 のことだ。円運動の角速度w (1秒あたりの回転角)は,この周期を用いて, さて、②式と④式に共通して入っているものは何かな? えーと、 ②式と④式には共通のA sin wtが入っています。 w (rad/s) 2 [rad] 回転する = T [s]間で かくしんどうすう と書けるね。 このωのことを単振動では角振動数という。 逆にこの式より、 周期Tは, 角振動数 w を使って, 2π そうだ。ここから式変形が続くけど,一つひとつ丁寧に追ってね。 ②式を, T= W と書くことができるね。 さて、図6のように, 半径Aで角速 度ωの円運動を真横から見た単振動を 考えよう。 円運動が点Pを通過した瞬 間を時刻 t = 0 とする。 このとき対応 する単振動の (中) の位置 P′の座標を x=xとしよう。時刻で円運動は点 Q を通過するが,このときまでの回転 角はwfとなっている。このときの単 振動の位置Q′の座標は,図6より, Asinwt=x-xo として,これを④式に代入すると, a=ls'(x-x) …... ⑤ となるね。 この⑤式は、時刻によらず, いつでも成り立つ式だね。 ここで、この式の両辺に質量m を掛けてみると, ma= -mω^(x-x)...... ⑥ さらに、この⑥式の右辺の係数を mw²= (定数K) ma = -K(x - x)… ••••••⑦ とおくと, wt: LAW となるね。 この⑧式は何を表しているかな? wt [00] =x+Asinwt...... ② ▼Asin w x PQ間の距離 図6 となっているね。 また、このときの単振動の速度と, 加速度αは, 円運動の接線 方向の速度 Awと,向心加速度 Aω' をそれぞれ真横から見たものと して、図6より, w= K mm 左辺が ma・・あ! 運動方程式です! そのとおり。 この式はまさに単振動の運動方程式となっているね。 どうやって,この式から周期Tを求めるんですか? まず, 物体が座標 x (0) にあるときに運動方程式を立てて⑧式の形に もっていくと,とKが出るでしょ。 このとき, ⑦式から, 角振動数 ⑨ が求まる。 wが求まれば、 ①式より, T= =2=2 m Aw coswt... ③ a= ==Aw'sin wt ④ 右向き正より ここまでの話は長かったけど. 物理では公式を導く過程が大切 だから、一つひとつ確認してね ⑨ より となっているね。 ここまで, じっくりと図6とニラメッコして もう となって,単振動の周期 Tが求まるんだ。 CS ~度速tanner でスキャン 第17章 221

解決済み 回答数: 1