物理
高校生
解決済み

円運動と単振動にかなり苦手意識を持っていて、何度読んでも何を言ってるのかいまいち分かりません。特に写真の右ページの式変形についてですが、「この式をあの式に代入したらこうなる」というのは分かる、というか見たまんまなので理解出来るのですが、それが何?ってなってしまって自分のものに出来てる感が全くありません。ここまで長々と書きましたが、こういう理解し難い単元の公式などはもう理論は一旦置いといて丸暗記しても大丈夫でしょうか。問題数をこなしていくうちに何となく理解できますか。それとも頑張って噛み砕いて基礎はしっかり理解した方がいいですか?

4 データ ③ 周期 Tとその求め方 周期Tとは,単振動に対応する円運動が1周回るのにかかる時間 のことだ。円運動の角速度w (1秒あたりの回転角)は,この周期を用いて, さて、②式と④式に共通して入っているものは何かな? えーと、 ②式と④式には共通のA sin wtが入っています。 w (rad/s) 2 [rad] 回転する = T [s]間で かくしんどうすう と書けるね。 このωのことを単振動では角振動数という。 逆にこの式より、 周期Tは, 角振動数 w を使って, 2π そうだ。ここから式変形が続くけど,一つひとつ丁寧に追ってね。 ②式を, T= W と書くことができるね。 さて、図6のように, 半径Aで角速 度ωの円運動を真横から見た単振動を 考えよう。 円運動が点Pを通過した瞬 間を時刻 t = 0 とする。 このとき対応 する単振動の (中) の位置 P′の座標を x=xとしよう。時刻で円運動は点 Q を通過するが,このときまでの回転 角はwfとなっている。このときの単 振動の位置Q′の座標は,図6より, Asinwt=x-xo として,これを④式に代入すると, a=ls'(x-x) …... ⑤ となるね。 この⑤式は、時刻によらず, いつでも成り立つ式だね。 ここで、この式の両辺に質量m を掛けてみると, ma= -mω^(x-x)...... ⑥ さらに、この⑥式の右辺の係数を mw²= (定数K) ma = -K(x - x)… ••••••⑦ とおくと, wt: LAW となるね。 この⑧式は何を表しているかな? wt [00] =x+Asinwt...... ② ▼Asin w x PQ間の距離 図6 となっているね。 また、このときの単振動の速度と, 加速度αは, 円運動の接線 方向の速度 Awと,向心加速度 Aω' をそれぞれ真横から見たものと して、図6より, w= K mm 左辺が ma・・あ! 運動方程式です! そのとおり。 この式はまさに単振動の運動方程式となっているね。 どうやって,この式から周期Tを求めるんですか? まず, 物体が座標 x (0) にあるときに運動方程式を立てて⑧式の形に もっていくと,とKが出るでしょ。 このとき, ⑦式から, 角振動数 ⑨ が求まる。 wが求まれば、 ①式より, T= =2=2 m Aw coswt... ③ a= ==Aw'sin wt ④ 右向き正より ここまでの話は長かったけど. 物理では公式を導く過程が大切 だから、一つひとつ確認してね ⑨ より となっているね。 ここまで, じっくりと図6とニラメッコして もう となって,単振動の周期 Tが求まるんだ。 CS ~度速tanner でスキャン 第17章 221

回答

✨ ベストアンサー ✨

⑤まで理解できればOKです。

ちなみに、左のページは
vはxをtで微分したもの
aはvをtで微分したもの
というのがわかっていれば②の理解だけで十分です。

⑤までは、白紙に自分でかけるようにしましょう。

問題の解き方としては、基本的に運動方程式をとりあえずたてます。そして、⑤と見比べるところから始まります。

あまり難しく考えることはありません。
質問があればどうぞ。

こんなに教えてくださるとは...
ありがとうございます!少し気が楽になりました笑

この回答にコメントする
疑問は解決しましたか?