学年

教科

質問の種類

物理 高校生

・⑶についてなんで安定とわかるのか教えてください ・コリオリ力に関しては円環に束縛されているから議論が不要ということですか?

120 Part 2 109. 遠心力 運動する.さらに,この円環は,その中心Cを通る鉛直線のまわりに, 一定の角速度で回転 図のように、質量mの小球が、鉛直面内におかれた平語の円頭上に拘束されてなめらか できるものとする. 重力加速度をg, また, 円環の中心Cから円環の最下点0に向かう方向と 中心Cから小球に向かう方向との間のなす角を0 (0は図の矢印の向きを正; -m ≧0≦)とし て、この円環上に拘束された小球の運動に関する以下の問いに答えよ. 〔A〕 まず,円環が固定されて回転していない場合 (ω=0) を考える. (1) 点0から円環に沿った小球の変位の大きさが十分小さいとき, 小球の運動は点0のまわ りでの単振動とみなせる。このとき、小球の振動する周期を求めよ.ただし,角度0が十 分小さいときに成り立つ近似式 sin 0≒0を用いてよい. 〔B〕次に、円環が一定の角速度で回転している場合(ω≠0) を考える.ただし、以下の問 (2) (3) では,円環とともに回転している観測者からみたときの小球の運動について考える ものとする. (2) 角速度の大きさがある値wc より小さく,さらに, 点0から円環に沿った小球の変位 の大きさが十分小さくて小球の運動が点0のまわりでの単振動とみなせるとき, wc, お よびこのときの振動の周期を求めよ.ただし, 角度0が十分小さいときに成り立つ近似式 sin 0≒0とcos0≒1 を用いてよい。 (3) 角速度の大きさをwcより大きくすると, 円環の最下点以外の0=±0(0<br<↑の 点で小球にはたらく力のすべてがつりあう.cos , を求め, さらに、そのつりあい点が安 定か不安定かを答えよ. C 鉛直線 W 10. ......... 0 円環 小球 §2-4 慣性の法則

回答募集中 回答数: 0
物理 高校生

この問題のイはなぜ⊿yに1/2がついているのですか?等加速度運動の式だとついていないのが正解のように思えます

次の文章を読んで, れの解答欄に記入せよ。 なお, に適した式を問1、問2では,指示に従って解答を で与えられたものと同じ式を表す。た はすでに だし,以下では,弦が受ける重力は無視できるものとする。 必要であれば、以下の関係式を使 ってもよい。 01 のとき sin0≒0≒ tan 0 7 x 関数y=sin(ax+b) の傾きは xの関数 y=cos (ax+b) の傾きは =-asin(ax+b)(a,b: 定数) Ay Ax sin(a+β)+sin(a-β)=2sinacos β, sin (a+β)-sin(α-β)=2cos a sin β T (1) 図1のように,一定の大きさTの力で水平に張られた線密度(単位長さ当たりの質量)p の十分に長い弦を伝わる横波について考える。 図2のように, 微小時間 At の間に,波が 水平方向に微小な長さ x だけ進むとき, 弦を伝わる波の速さvv=ア と表される。 この間に、波の右端付近では, 長さ x の部分(以下ではこの部分をXとする) が波の進行 とともにわずかに持ち上げられる (変位する)。 微小時間 At の間, X は張力のみを受けて, 運動するとみなせる。 X の鉛直方向の運動を初速度 0, 加速度の大きさαの等加速度運動と 近似すると,Xの重心の変位の大きさ 1/24y , Ata のみを用いて, 1/1/24y=イ]と 表される。さらに, 長さ x の部分 X が受ける力の鉛直成分は,張力 T の鉛直成分 Tyの みであるから,運動方程式より,aは,p, Ax および T, を用いてa=ウと表される。 加えて,弦が水平となす角度が十分小さいとき, Ty=x Ayr と書くことができるので,”は To のみを使ってv= エ と表すことができる。 of T Ay Ax V Ty =acos(ax+b)(a,b: 定数) 図1 4x 4y T T

回答募集中 回答数: 0
物理 高校生

これ基底状態から第一励起状態になるときk格からL格に電子が1つ移ることで電子同士の斥力でなんかすごいことになったりしないんですか?

594. フランク・ヘルツの実験 解答 (1) 解説を参照 (2) 2.5 指針 加速された電子の運動エネルギーが, 水銀原子の基底状態と, 最もエネルギーの低い励起状態とのエネルギー差に等しくなるとき, 原 子内の電子を励起し、エネルギーを失う。 エネルギー差に等しくないと きは、原子内の電子を励起できず, エネルギーを失わない。 解説 (1) FG間の電位差で加速された電子は,その運動エネル ギーが小さいとき, 水銀原子に衝突しても, 原子内の電子を励起でき ないので,途中でエネルギーを失うことなくPに達する。 しかし, 加 速した電子のエネルギーが, 水銀原子の基底状態と, 最もエネルギー の低い励起状態とのエネルギー差に等しくなると,電子は,水銀原子 内の電子を励起し, エネルギーを失う。 このため,電子は, Gよりも わずかに電位の低いPに到達できなくなり、 電流計に流れる電流が減 少する。 さらに電位差Vを大きくすると,やがて電子のエネルギーは, 2回目の励起によって失われ、 再び電流が減少する。 このようにして, 電流は,増加・減少を繰り返す (図)。 (2) 電位差Vが4.9V 大きくなるたびに、電流は減少を繰り返すため. 水銀原子のエネルギー準位の差は 4.9eV である。 また, 観測される紫 外線は, 励起された水銀原子内の電子が基底状態にもどるときに放出 される光子であり, 4.9eVのエネルギーをもつ。 プランク定数をん, 電気素量をe, 光速を c, 紫外線の波長を入とする と. eV= 入について整理し, 各数値を代入すると, i= hc eV = hc 入 ( 6.6×10-34) × ( 3.0×10) (1.6×10-19)×4.9 = 2.52×10-7m 2.5×10-7m 理 C

回答募集中 回答数: 0