学年

教科

質問の種類

物理 高校生

(3)は何で、20mになるんですか? y=19.6まではできたんですけど、何で20になるか分かりません。 有効数字3桁じゃないんですか?

落下 -s), g 15 20 10 30 25 5 20 15 10 5 きさを g〔m/s²] 位をy[m]とする とおくと, 鉛直投げ上げ運動は次式で表される。 v = Vo - gt 1 291² y = vot- 鉛直投げ上げ運動 v (m/s) ●v[m/s] 速度 (velocity), [ 〔m/s) 初速度 (velocity), ●y [m] 変位, ●g 〔m/s²]: 重力加速度の大きさ (gravitational acceleration) v²-vo²=-2gy 19 17 [s]: 時間 (time), 18 Vo O y, Do Vo, a = - g 最高点まで の変位 (傾き- g 最高点から の変位 v = vo-gt 例題 8 鉛直投げ上げ運動 小球を地面から初速度 19.6m/sで真上に投げ上げた。 次の問い に答えよ。 ただし、重力加速度の大きさを9.8m/s2 とする。 (1) 1.0s 後の小球の速度はいくらか。 (2) 1.0s 間の小球の変位はいくらか。 (3) 最高点の地面からの高さはいくらか。 (4) 3.0s 後の小球の速度はいくらか。 解 鉛直上向きを正の向きとする。 (1) 式図7にvo = 19.6m/s, g = 9.8m/s, t = 1.0s を代入して, v=19.6m/s - 9.8m/s2 × 1.0s = 9.8m/s (2) 式区にv=19.6m/s, g=9.8m/s2, t = 1.0s を代入して, y = 19.6m/s × 1.0s - x 9.8 m/s² x (1.0s)² = 14.7 m 1 2 t(s) (3) 式19にv=0m/s, v = 19.6m/s, g = 9.8m/s² を代入して (0m/s) (19.6m/s)2=-2x 9.8m/s2 x y y=19.6m (4) 式図7にv=19.6m/s, g=9.8m/s2, t = 3.0s を代入して, v=19.6m/s - 9.8m/s2 x 3.0s = -9.8m/s ・vo POINT ・鉛直投げ上げ運動の特徴: 最高点での速度はv=0m/s. ▲図2 鉛直投げ上げ運動 Note 等加速度直線運動の関係式 v = vo + at 8 9 x = vot+ 1/12/0 v² vo² = 2 ax 19.6m/s Note 最高点では, 速度は 0m/sとなる。 at² 10 容 (1) 上向きに 9.8m/s (2) 上向きに15m (3)20m (4) 下向きに 9.8m/s 1節運動の表し方 23

解決済み 回答数: 2
物理 高校生

3枚目のエネルギー保存の式を図で描き、そこからXminを求めようとしたのですが上手く行きませんでした。 グラフが間違っていますか? 正しいグラフを教えてください🙇‍♀️

図のように, 滑らかな水平面上に質量Mの小物体Bが置かれ, その右方には, ばね定数kの軽い ばねが取り付けられた質量mの小球Cが置かれている。 いま, Bの左方から質量mの小球Aが速さ ひ でBに向かって運動し衝突した。 A, B, C の運動はすべて同一直線上で行われ, 空気の抵抗は無視で きる。また, A,B間の反発係数はe として,次の問に答えよ。 ただし, 速度, 力積等のベクトル量は, 図の右向きを正とする。 A (1) 0 m-eM m+M vo ②00 10 問1 衝突直後の A, Bの速度をそれぞれ, Vとする。 これらを求めよ。 1 V = 2 772 eM m+M ① V. 5 V 6 -Vo ② V (3 m k Vo ハイレベル物理 前半 第4講 チェックテスト V (6) M m+ M. mM k(m + M) 問2 衝突の瞬間, A B から受ける力積を求めよ。 3 mM (1) mvo (2) -mvo -Vo m+ M m (m-eM) m+M em - M m+M 6 ③3 -Vo -Vo em m+M M(em-M) m+ M 4 V (6) V -V 7 B 4 ③V M m m+M (1+e) M m+M -Vo -vo 7 問3 B がばねと接触している際、 ばねが最も短くなるときのBの速度を求めよ。 4 M m+M m m+M mM √k(m-M) 4 問4 問3のとき, ばねの自然長からの縮みはいくらか。 5 ® V√ √ M ④V ②V m+M k -Vo V mM m+ M (1+e)mM, (m + M)² 100000 V (1+e)mM m+M (8) ⑦V -Vo (1+e)m m+M 8 -Vo 8 m-M k -Vo m √k(m + M) (1-e) mM y (m+M)² C (1+e) mM m+ M m ⑧ V. -Vo M √k(m + M)

回答募集中 回答数: 0
物理 高校生

明治大学の過去問です。 1枚目の11と12がわかりません。3枚目は12の選択肢です。どなたか教えていただきたいです 11は-2Q/3、12はEが正解です

Ⓒ2√5 8 の解答群 √√2 2 L V6 Ⓡ L 2 〔II〕 次の文中の C [® F に与えた電気量は 描いた図は 12 √3 2 √7. 2 © L ©L G√2L 9 から 16 から一つ選び,解答用紙の所定の欄にその記号をマークせよ。 ⒸVEL に最も適するものをそれぞれの解答群 真空中に,点Oを中心とする半径R 〔m〕 の不導体球Iがある。この球の内部 は一様に正に帯電しており, 全体で電気量Q〔C〕をもつ。 クーロンの法則の比 例定数をk [N・m²/C2] とする。 (1----) 38 @ (^-^) MO 0 1. 図1のように、点Oを中心とする不導体球Ⅰより大きな半径r 〔m〕 の球面 Sを考える。電場(電界)の強さがE[N/C〕 のとき,電場に垂直な面を単位 面積あたりE本の電気力線が貫くと定めると, 球面Sを貫く電気力線の本 数Nは, S内に含まれる電気量を用いて N = 9 である。 球面S上の inpony 電場は面に垂直であるので, S上の電場の強さは は 〔N/C〕となる。 このように,帯電体の外側の電場は,帯電体を囲む曲面の内部にある電気量 4 AV で定まり、点Oに同じ電気量をもつ点電荷があるとみなすことができる。 この不導体球Iを,図2のように点Oを中心とする中空の導体球殻ⅡIで囲 10 んだ。導体球殻 ⅡIに電荷を与えて帯電させると、導体球殻ⅡIの外側の電場 Q は、点Oに電気量 200 の点電荷があるときの電場と等しくなった。導体球殻IⅡI 3 11 である。また,不導体球Iの外側の電気力線を である。 Bように、下痢止 た点での単板 と点0での電 ただし、電力の基準は無

回答募集中 回答数: 0
物理 高校生

この問題に関して質問です。 ・(イ)でなぜv<Vと分かるのですか? ・(ハ)でなぜt=2πnl/Tと分かるのか ・(ハ)の運動方程式でなぜma=kVとなるのか 全てじゃなくていいので、教えて頂けると助かります。

12 2023 年度 物理 2 鉛直に固定された中心軸の周りを回転する液体中における小球の運動を調べる。液体を満た した容器の中で,中心軸上の点に、長さの細くて質量が無視できる支持棒が取り付けられて いる。 図1のように、質量mの小球が支持棒の先に固定され, 液体内で半径の円運動をする。 小球や液体の円運動を単位時間あたりの回転数で表す。 小球が液体から受ける力は、小球の速度 に平行で、小球と液体の速度が近づくように働く。 力の大きさは、液体と小球の相対速度の大き さのお倍(k>0)である。 支持棒が液体から受ける力は無視できる。液体の容器はじゅうぶんに 大きく、液体は小球の運動の影響を受けないとしてよい。 以下の問に答えよ。 液体の回転数を一定に保った実験を行う。 小球は時刻 t=0に円運動を始め, じゅうぶんに時間 が経過すると、その回転数が no で一定になったとみなせるようになった。このときの小球の角速 度は 2 と表される。 図2の曲線は,その間の小球の回転数の変化を表している。図中の破線は t=0における曲線の接線であり, 原点(0, 0) と点 (T,no) を通る。 (イ)ある瞬間の小球の速さをv, 小球の位置における液体の速さをVとする。 小球の運動方向の 加速度の大きさと,小球が支持棒から受ける中心軸方向の力の大きさ N を,それぞれm, k, V,v, l より必要なものを用いて表せ。 (ロ) 小球の回転数が no に達したとみなせるとき, VとNをそれぞれ m, l, no より必要なもの を用いて表せ。 ×(ハ) 比例係数kをm, l, no, T より必要なものを用いて表せ。 小球の回転数が no に達してからじゅうぶんに時間が経った後, 液体の回転数を一定の割合で増 加させた。 液体の回転数の増加を開始した時刻を改めてt=0 として, その後の小球の回転数の変 化を表したグラフが図3である。 時刻 t=3Tにおいて小球の回転数は2m となり, その後, 小球 の回転数の単位時間あたりの増加は一定とみなせるようになった。 t=3T の後の回転数の変化の no となる位置で縦軸と交わった。 グラフを, t<3T の範囲に伸ばすと, t=0のときに回転数が 2 X(二) 時刻 3T より後の時刻t を考える。小球の速さ”と液体の速さ V を,それぞれl, no, T, t を用いて表せ。 4回転数 no 0¹ T 液体の速さ 図2 中心軸 Ko 時間 図 1 V 支持棒 4回転数 2no mm-20 図3 (3T) 時間 t

解決済み 回答数: 1