学年

教科

質問の種類

数学 高校生

vision questⅡ English expression hope70ページ preview 1.date&time 2.numbers(sizes,measurements,etc) 3.prices&Phone numbers listening task 1.... 続きを読む

140 // TIT Activity for Communication 3 Preview Listen to the sentences below. 1 Dates & Times Listening for Numbers the on Enio 1. "The movie starts at 5:20. Can you be ready in ten minutes?" "OK. I'll try." 2. "What time is it now?" "It's 11:30." basalaila awohlsw 3. I have an appointment with the dentist this Thursday, the 10th. M 4. "When does school begin?" "It begins on April 8th." 5. Our school was established in 1965. 6. My family has lived in this town since 2005. 2 Numbers (sizes, measurements, etc.) 1. Two thirds of the students come to school by bus. 2. One mile is about 1,609 meters. 3. The city has a population of about 2.5 million. 4. The temperature dropped to 12°C. 5. APA Air Flight 125 for London will be departing from Gate 14 at 10:15. 3 Prices & Phone numbers 1. The price of this bag is $27.89, but you can have it at 10 percent off. 2. What would you do if you won 100 million yen in a lottery? 3. "A hamburger and a cola, please." "That'll be £2.99." 4. I need €20, but I'm €5 short. 5. My phone number is 612-750-5613. Listening Task Listen to the conversations and choose the correct answers. 1. How much of the earth's surface is covered by ocean? 1 more than one third more than one fourth 監督署 ER 70 3 more than two thirds 4 more than two fifths 2. When were the Olympic Games held in Atlanta? 1 in 1966 2 in 1969 3. How much did the dress cost? 1,100 yen 2 1,800 yen 3 in 1996 4 in 1999 S 8,000 yen ③ 13,000 48,800 yen bluros ④ 30,000 about 200,000 4. How many people can the concert hall hold? ① 1,300 ② 3,000 5. How many people live in the city? ①about 2,000 2 about 12,000 3 about 20,000 ① 207-7300 2207-7003 ③ 702-3300 6. What's the phone number of the restaurant? The number is 510- ④ 702-3003

回答募集中 回答数: 0
数学 高校生

緑線を引いたところが理解できません。 なぜ下の表からわかるのでしょうか? 教えていただきたいです。 よろしくお願いいたしますm(_ _)m

統計検定4級 問 12 箱ひげ図 次の表は、 あるクラスの32人の身長を度数分布表に集計したものである 身長 度数(人) 153cm 以上156cm 未満 7 17 156cm 以上159cm 未満 8 15 159cm 以上162cm 未満 5 162cm以上165cm 未満 8 28 165cm以上168cm 未満 3 168cm以上171cm 未満 1 32 問 12の解説 正解 1 「与えられた度数分布表から適切な箱ひげ図を選ぶ問題である。 下の表より、最小値は153cm 以上156cm 未満, 第1四分位数は 156cm 以 159cm未満, 中央値は 159cm 以上162cm 未満 第3四分位数は162cm以 165cm未満 最大値は 168cm以上171cm未満であるので,A~Cの箱ひ げ図がこれらの結果と矛盾しないかを検討する。 A. すべてにおいて矛盾しない。 B. 中央値が159cm 未満であるから矛盾する。 C. 第1四分位数が159cm 以上であるから矛盾する。 以上から, A のみ矛盾しないので,正解は①である。 PAULT 次のA~Cの箱ひげ図のうち上の度数分布表と矛盾しないものはどれか。下の ①~⑤のうちから最も適切なものを一つ選べ。 (単位:人) ものである。 よって 身長 度数 累積度数 153cm 以上156cm 未満 7 7 A (2) 156cm以上159cm 未満 8 15 テスト 159cm 以上162cm 未満 5 20 PART 162cm 以上 165cm 未満 8 28 B ( DE CE OF T 165cm 以上168cm 未満 31 31 32 168cm以上171cm 未満 別の問題 C T T 153 156 159 162 165 168 171 身長(cm) ① A のみ矛盾しない。 (2) Bのみ矛盾しない。 (3) Cのみ矛盾しない。 ④ AとBのみ矛盾しない。 ⑤ AとBとCのすべて矛盾しない。 271

解決済み 回答数: 1
数学 高校生

矢印より下の解説がよくわかりません。 教えて欲しいです

57 独立な試行の確率の最大 423 00000 さいころを続けて100回抜けるとき、1の目がちょうど回(100) 出る確 粒 CX 6100 であり、この確率が最大になるのはkのときである。 (慶応大) 基本49 求める確率を とする。 1の目が回出るとき 他の目が100回出る。 確率ps の最大値を直接求めることは難しい。 このようなときは、隣接する2項 Part その大小を比較する。大小の比較をするときは、差をとることが多い。し かし、確率は負の値をとらないことと,C, や階乗が多く出てくることから,比 Di+11P+1 (増加), n! Pk+1 r!(n-r)! をとり、1との大小を比べるとよい。 <1>Da+1 (減少) を使うため、式の中に乗 CHART 確率の大小比較 比 Dk+1 Þk をとり、1との大小を比べる pk pk=100Ck pk+1 = ここで × (k+1)!(99-k)! さいころを100回投げるとき 1の目がちょうど回出る 確率を とすると pk 小 100-k (1)(c) =100CkX 75100-k 6100 反復試行の確率。 100!.599-k k!(100-k)! 100!-5100-k k! (100-k)(99-k)! 599-k 100-k (k+1)k! (99-k)! 5.599- 5(k+1) PREDLO CDX 5100-D ・・・の々の代わりに +1 とおく。 6:00 Pa+11 とすると 100-k ->1 5(k+1) 両辺に5(k+1) [0] を掛けて 100-k>5(k+1) 95 これを解くと k< -=15.8・・・ 6 よって, 0≦k≦15のとき Dk<pk+1 は kは 0≦k≦100 を満たす 整数である。 Pk +1 <1 とすると これを解いて 95 6 って、16のとき 100-k<5(k+1) k>=15.8・・・ pk>pk+1 の大きさを棒で表すと PLAY 最大) 増加 減少 たがって かくかく・・・・・・<か15< 16, P16>p17>.. って が最大になるのはk=16のときである。 ↑100 ・>p100 012 15 17 99 16 TE こん

解決済み 回答数: 1
数学 高校生

【】でかこったとこなのですが、なにをやってるのかよくわかりません。教えて欲しいです!

+d. y=x 答! 例題 基本の 135 an+1=pan+(nの1次式) 型の漸化式 a=1, an+1=3an+4n によって定められる数列{an} の一般項を求めよ。 p.464 / 基本 34 4基本例題 34 の漸化式 an+1=pan+gで,g が定数ではなく,nの1次式となっ ている。 このような場合は, n を消去するために 階差数列の利用を考える。 漸化式のnをn+1とおき, a +2 についての関係式を作る。 これともとの漸化式 との差をとり,階差数列{an+1-an} についての漸化式を処理する。 また,検討のように, 等比数列の形に変形する方法もある。 CHART an+1=3an+4n 漸化式 (.. = part (n の1次式)階差数列の利用 nの吹式 ① とすると 2=3an+1+4(n+1) ...... 2 an+2-an+1=3(an+1-an)+4 an+2= ②①から anti-an=bn とおくと これを変形すると また PHZ bn+1=36+4 bn+1+2=3(6n+2) b1+2=a2-a1+2=7-1+2=8 よって、数列{6m+2}は初項 8, 公比3の等比数列で b+2=83-1 すなわち bn=8•3"-1-2 ①のn に n+1 を代入す ると②になる。 差を作り, nを消去する。 <{bn}は{an}の階差数列 。 α=3a+4 から α=-2 <a2=3a+4・1=7 (*) n≧2のとき n-1 an=a1+Σbk y=x n≧2のとき n-1 an=a1+ (8.3k-1-2)=1+ 8(3-1-1) -2(n-1) k=1 3-1 である。 =4・3-1-2n-1 ③ n=1のとき 4・3°-2・1-1=1 a =1であるから, ③はn=1のときも成り立つ。 ① 初項は特別扱い う。 したがって an=4.3-1-2n-1 1 章 漸化式数列 x-4 =x 11x 三点 移動 図 (*) を導いた後, an+1-an=8•3-1-2 に ① を代入してan を求めてもよい。 ると 4.-(αrn+B)} を等比数列とする解法 例題はan+1=pan+(nの1次式) の形をしている。 そこで, f(n)=an+βとして, =3+4n, an+1-f(n+1)=3{an-f(n)} の値を定める。 ⑩から ゆえに an+1_{α(n+1)+B}=3{an-(an+B)} これと an+1=3an+4n の右辺の係数を比較して an+1=3an-2an+α-2β α=-2, β=-1 ...... A の形に変形できるように α,β -2c=4,α-2β=0 ゆえに f(n)=-2n-1 より、数列{an- (−2n-1)} は初項 α1+2+1=4, 公比3の等比数列であるから an-(-2n-1)=4.3n-1 an=4.3" -2n-1 したがって 02-2 2c 106 +3によって定められる数列{a} の一般項を求めよ。

解決済み 回答数: 1
1/13