学年

教科

質問の種類

数学 高校生

下の問題を二枚目の写真のように解きました。 このやり方だと,XとYの値が求めれなかったのですが,求め方はありますか? また,解説のように解く方がいいですか?

その 基本 89 した 00000 実数x,yx+y2=2を満たすとき, 2x+yのとりうる値の最大値と最小値を 求めよ。 また、そのときのx,yの値を求めよ。 指針 [類 南山大 ] 基本101 条件式は文字を減らす方針でいきたいが,条件式x2+y2=2から文 字を減らしても2x+yはx,yについての1次式であるからうま くいかない。 そこで, 2x+y=t とおき,tのとりうる値の範囲を調べることで, 最大値と最小値を求める。 ← 2x+y=t を y=t-2x と変形し,x2+y2=2に代入してyを消 去すると x2+(t-2x) =2となり,xの2次方程式になる。 xは実数であるから,この方程式が実数解をもつ条件を利用する。 実数解をもつ⇔D≧0 の利用。 見方をかっ CHART 最大 最小 =tとおいて,実数解をもつ条件利用 20 2x+y=t とおくと y=t-2x ① 解答 これをx2+y2=2に代入すると したがって x2+(t-2x)=2 整理すると 次 5x2 -4tx+t2-2=0 自去す このxについての2次方程式 ② が実数解をもつための 条件は、②の判別式をDとすると (+)=S+ツの不等式)。 (2) D≧0 ここで D=(2t)-5(2-2)=-(t-10) D≧0から 参考実数a, b, x, yに ついて,次の不等式が成り 立つ (コーシー・シュワル CONCE(ax+by)≤(a+b)(x²+ y²) [等号成立は ay=bx ] この不等式に a=2,6=1 (を代入することで解くこと できる。 t2-10≤0 フェ これを解いて -√10 ≤t≤√10 t=±√10 のとき, D=0で,②は重解 x=- -4t_2t を のとき②は t=±√10 2.5 5 もつ。=±√10 のとき x=± 2/10 よって 5x2+4√10x+8=0 よってまたは 5 /10 ①から y=± (複号同順) 5 よって x= 2/10 10 y= のとき最大値10 主 ゆえに 2√2 2/10 x=± =土・ 5 √ 10 5 ” 5 2/10 √10 x=- 5 " y=- のとき最小値√10 √5 ①からy=土- 5 (複号同順) 5 としてもよい。 である。 たすとき の

解決済み 回答数: 1
数学 高校生

なぜ赤いマーカーの部分を記述しなければいけないのでしょうか。底eが1より大きいということ自体は分かります。

1-1であるから したがって a=1+(1-tcos0 =(1-1)2+sin0) '+2=(1+(1-1)cos0)+(1-012+ sin 0 ) =12+2(1-1)cos0 +(1-1)² cos² 0 +(1-4)(4+4sin0+sin20) =125(1-1)2+24(1-1)cos0 +4(1-1)²sin 0 =22sino-cos0 +3) 2 24sin0 -cos0 + 5 ) + 4sin 0 +5 20tとして, R (a, β, t), S(0, 0, t) とする。 立体を平面 z=t で切った切り口は,半径RSの円で あるから、立体の体積Vは (a². v=rRS°dt == a +69dt xf {22sin-coso+3)2 よって 1+12 dt= 12 ゆえに 1+1 + 1+tan' cos¹ -0-0-4 (2) 与えられた不等式の定める立体をAとする。 与えられた不等式から x2+y2log2log(1+27) do ....... ・① ①を満たす実数x,yが存在するための条件は log2log(1+27)20 すなわち log(1+24) ≤log 2 底は1より大きいから 1+222 よって, zのとりうる値の範囲は 立体 A を平面 z=f(-1 口を表す関係式は 1)で切ったときの切り 中 x2+yslog2log(1+t), z=t ゆえに、切り口の面積を S(f) とすると S(t)== (log2-log (1+1)) -2(4sin-cos 0+5)+4sin 0+5)dt 2 (2sincos0 +3) ー(4sine-cos0 +5)+(4sin0 +5) fff (si 4sin02cos0 +6-12sin0 + 3cos0-1512sin + 15 ) =(4sin 6 (4sin0 + cosO+6) =(4 (3)(2)から V= '=zz(√17 sin(0 + A) + 6} 1 ただし sin A=- = 4 cos A=- √17 √17acage QがC上を1周するから, sin (0+A) のとりうる値 の範囲は -1sin(0+A)≤1 立体 A は xy平面に関して対称であるから, 求める 体積をVとすると v=25' sindt V= =2x(log 2-log (1+1)]dt =27[410g2]-2-[110g(1+19]。 +2=√ 土. 12 -dt 2t 1+12 -dt =2mlog2-2mlog2+4ro1 pees よって、体積Vの最大値は 6+√17 -, 最小値は ま 3 =4T -dt 6-√17 である。 3 したがって,(1)からV=4(1-4)=2(4-3) 237 体積 238 体積 不等式の定める立体(領域)の体積 立体の存在範囲を調べて, 平面 zf で切ったと きの切り口の断面積をtの関数を表す。 関数 出題テーマと考え方 .603 出題テーマと考え方 線分が通過してできる曲面の回転体の体積 (2) 曲面Sの平面 x=uでの切り口の面積をの 関数で表す。 12 (1) dt= =S' ( 1 - 1 + 1 = dt = S'dt - So 1 + 1² (1) 平面 x=uで考えると. 右の図のようになる。 2 (x=1) Stadt=[r]=1 点O'(1, 0, 0) から線分 1 PQ までの距離を1とし Q t=tano (002) とおくと t 0→1 △PQO′の面積を考える と, PQ=1から 1 dt= -do COS20 0 ←0 44 P 0 14 1 y 2 よって l="√1-u2+ホース)=

解決済み 回答数: 1
1/5