学年

教科

質問の種類

数学 高校生

287番の問題についてです。 someの対比として、othersが使われるのは理解できたのですが、この文では賛成したor賛成してない、の二択なので、the others(選択肢にはないですが…)でも良い気がするのですが、どう思いますか? もし選択肢にあったらどっちを選んでも... 続きを読む

haisance province 36 問題演習 1 STEP それぞれの空所に入る最も適切なものを 選択肢から1つ選びなさい。 285 I have two brothers. One is a fireman and ( ) is a police officer. 000 1 others ② any ③ the other ④ another SENE 185 ③残りの1人は... 兄弟が「2人」とあり、1人目はOne なので、 「残りの1人」は誰だか特 認識できるため、③ the other を使います。 286 This photograph of my friend is not very good. Let me show you 000 訳 僕には2人兄弟がいる。1人は消防士でもう一人は警察官だ。 ( 神戸学院大学) 286 (2) ( ) one. 1 about ③ simple ② another ④good 「もう一つ」を表すには? 何枚かある写真のうちの)もう1枚を見せてあげる」 というこ another を選びます。 「たくさんある中の1つ」 は、anを another = "an + other" でしたね。 この「もう1つ追加」とい another は入試頻出です。 和訳私の友達のこの写真はあまりよくない。もう1枚のを見せてあ (中京大学) 287 000 Some board members agreed with the president's proposal but ( ) 287 (3 didn't. ① another ③ others ② other ④ the other If you need an English dictionary, I will lend you ( 288 000 (1) some )this -89 Thought a cookbo (愛知学院大学) 2 one ④any (拓殖大学) the other と others の区別 文頭Some board members agreed 「賛成した役員もいる」 しなかった役員もいる」 には ③ others を使います。 ④ the ot 1人が賛成しなかった」 と断定してしまうことになります。 成でも反対でもない人」がいることを考えないといけないの 和訳社長の提案に賛成した役員もいたが、そうでない役員もいた 288 「同種類」を表すには? 空所にはan English dictionary という「不特定」の名詞を受 ります。 この[不特定」の感覚は「同種類」とも言えます。「同 というときに② one を使うのです。 和訳もし英語の辞書がいるなら、貸してあげるよ。 it one の区別 です。 ここでは、決し そのcookbo

未解決 回答数: 1
数学 高校生

241. このような解答でも問題ないですか? また積分で面積を求める系の問題では 模範解答ではほぼ必ず「図よりS=」 と結論へ進んでいるように思うのですが、 記述問題では図を書いた方がいいのでしょうか? またこの問題で図を書くとなると、曲線の極値などを求めて図を書くというこ... 続きを読む

2 基本例題 241 3次曲線と接線の間の面積 曲線y=x²-5x2+2x+6 とその曲線上の点(3, -6) における接線で囲まれた図 形の面積Sを求めよ。 とする。 基本 238,240 重要 247 指針 211 原点 面積を求める方針は ① グラフをかく 2 積分区間の決定 ③3 上下関係に注意 本問では,まず接線の方程式を求め, 3次曲線と接線の共有点のx座標を求める。 また、積分の計算においては,次のことを利用するとよい。 3次曲線 y=f(x)(x2の係数がα) と直線y=g(x) が x=α で接するとき,等式 f(x)-g(x)=a(x-α)*(x-β) が成り立つ。エロー (2 気に 解答 y'=3x²-10x+2であるから,接線の 方程式は Dip y-(-6)=(3・32-10・3+2)(x-3) すなわち y=-x-3Sは この接線と曲線の共有点のx座標は, x3-5x2+2x+6=-x-3の解である。 これから x 3-5x2+3x+9=0 ( * ) ゆえに (x-3)^(x+1)=0 よって x=3, -1 したがって,図から、求める面積は S=S², 10 {(x-5x²+2x+6)-(-x-3)}dx ...... YA 6 -3 ico 6 3 18 x |曲線 y=f(x) 上の点 (α, f(α)) における接線の 方程式は y=f(a)=f'(a)(x-α) 1(x)0-(2017-2 辺が 【左辺が(x-3)を因数にも つことに注意して因数分解。 3 93 S 703230 1 -5 3 -6 -9 1 -2 -3 2013 380586 1904 1 =S_,(x-3)(x+1)dx =S²₂ (x−3)²{(x−3) +¹)dx=S_₁ {(x-3)² + 4(x-3)²) dx (x-a)²(x-B) - -[(x-3)" ], +4 [ {x=32], --64+ 256-04 (x-3)373 3 =(x-2)^{(x-2)-(B-α)} = S(x-a)" dx = (x=a)^² +C | ◄ n+1 36 7章 41 面 積

未解決 回答数: 0
数学 高校生

丸で囲った式をどうやって出すかがわかりません。 あと例題と練習で似たような問題なんですが練習の方が最後の方に向きの説明を入れなければならないのはなぜですか?練習の方は平面上のベクトルと書いてあるからだと思ったんですがなぜ平面上だと向きの話が必要で例題の何も書いてない普通のベ... 続きを読む

3 |C1.14 d-8-81-457 x+√3/9 平面上のベクトル, 方 が |20+6=1, |a-36|=1 を満たすとき, a +6 | の最大値, ga 1 最小値を求めよ. 8800 (1) 2a+b=u.......①, a-36=1... ② とおくと, ||=1, |v|=1 ① ② より, a, を で表すと, ICT.11 a=³u+v 7 a+b = よって, 10+12=1 =4-20 7 4u-v 7 2 4u ・ひ 7 49 (16×1²-8u v+1²) [ 49 =1 (17-84-7)..... 49 √(16|u|²—8û•v+|v|²) 0=²1+5= ここで、より したがって, ③より, 9 49 lã+620 *D. /slá+b== 0 0812020 ++①×3+② より, TW=10+58/ 0-1 (0+5) 7b=u_2v ≤lá +61²≤ 250 -1≤u v≤1 18 きとは逆向きで ||=||=1 であるから, すなわち, ①② より, 2a+b=(a-36) 最小値 2 7a=3u+v ①②×2 より, -=0|2|=1, |v=1 a +6= 2 となるのは、=-1 のときであり、このと 2020 ed ab=alb|cose 80-8-1≤cos0≤1 £4, €1.50 -Tallosa·b≤|a||b| A-3A1=158) (1) cos0=1 より, 8=0° | +6= 2 となるのは、 v=1のときであり,このときのとき, ひとこは同じ向きで ||=|=1 であるから, すなわち, ① ② より, 2a+b=a-3 i=b したがって, a=-4b このとき, 2a+6=|-76=1 より, 0A +30 ROU 条件を満たす a, が存在す ることを確認したが,省略し てもよい。 〇京 (⑧) このとは川のとき、 u=v cos0=-1 より 0=180° HA OA 08 したがって, d=23236 a= co2³, 12a+b=26=10, 16A-Am-+-HA9)S よって, la +6| の最大値 1408OA0 のとき HA-OAS-ON TOA $18A1-A OAS ALEBA OSHEANS 2xy+2x+2xs と同様に展開する。

回答募集中 回答数: 0
1/7