学年

教科

質問の種類

数学 高校生

練習31番が分かりません😭 例題のような円の式yの二乗が残ってなくてこの後どうしたらいいか分かりません💦 教えてください🙇🙇

第3章 図形と方程式 5 イメージ 8 例題 Link 座標を用いて点Pの軌跡を求める手順は,次のようになる。 1 条件を満たす点Pの座標を (x, y) として, P に関する条件を x,yの式で表し,この方程式の表す図形が何かを調べる。 2 逆に,1で求めた図形上のすべての点Pが, 与えられた条件 を満たすことを確かめる。 原点からの距離と, 点A(3,0) からの距離の比が 2:1 である 点Pの軌跡を求めよ。 解答点Pの座標を (x, y) とする。 y Pに関する条件は OP(x, y) 10 10 OP: AP=2:1 A 0 3 x これより 2AP= OP すなわち 4AP2 = OP2 15 AP2=(x-3)2+y^, OP2 = x2+y^ を代入すると 4{(x-3)2+y^}=x2+y2 整理すると x2-8x+y+12=0 すなわち (x-4)2+y2=22 したがって,点Pは円 (x-4)2+y2=22上にある。 逆に,この円上のすべての点P(x, y) は,条件を満たす。 よって, 求める軌跡は,点 (40) を中心とする半径2の円である。 200 練習 点A(-3, 0) からの距離と, 点B ( 2, 0) からの距離の比が 3:2であ 31 る点Pの軌跡を求めよ。 補足 一般に,点Aからの距離と,点Bからの距離 の比が min である点Pの軌跡は,m≠n の A -mn B とき円になる。 この円をアポロニウスの円 という。この円は, 線分AB を min に内分す m. 25 25 る点と外分する点を直径の両端とする円である中

回答募集中 回答数: 0
数学 高校生

問題3枚目、図・表1.2枚目です。問題の2.3.4.が分からないです。わかる所だけでも解説よろしくお願いします。

20 TV 34 2019 年度 総合問題 次の文章を読んで、後の問1~問5に答えなさい。 図1は、経済協力開発機構(OECD) 印度でいるのが国の相対的武術の タである。 相対的貧困率とは、各国の所得分布における中央値の50%に満たない 人々の総人口に占める割合である。 20% 18% 16% 14% 12% 10% 8% 6% 4% 2% 0% チェコ フィンランド フランス アイスランド デンマーク 5 オランダ ノルウェー スロバキア オーストリア スウェーデン スイス ベルギー スロベニア アイルランド イギリス ドイツ ハンガリー ルクセンブルク ニュージーランド ポーランド 5-5 OECD平均 福山市立大・柳瀬 韓国 カナダ イタリア ポルトガル オーストラリア ギリシア スペイン 図1 相対的貧困率の国際比較」 スエチ エ 日本 チリ リトアニア 「ラトビア ストニア トルコ イスラエル アメリカ 福山市立大 表 世帯総 平均世帯 相対的 平坦 中 15.7 注1) 各国のデータは,2012年~2016年のデータの中で最新のデータをもとにし ている。 出典:経済協力開発機構 (2018), Income distribution, OECD Social and Welfare Statistics (database), https://doi.org/10.1787/data-00654-en をもとに作成 ETUT ROB09229 表1は,日本における世帯数と世帯人員,各世帯の所得などの年次推移を示してい る。表2は,各国の絶対的な貧困率を示すデータである。絶対的な貧困率とは、経済 的な理由のために,食料が買えない,医療を受けられない、衣服が買えないなどの状 態に,過去1年間に陥ったことがある割合を示している。 torn at T som med sin blunded vonom an

回答募集中 回答数: 0
数学 高校生

EX76の問題を標問135の研究と同じ解き方で、3x+2y=6nを両辺6で割ってx/2+y/3=nになってx=2k、x=2k-1で場合分けして解くことはできますか。

無問 135 格子点の個数 I, y, z を整数とするとき, ry平面上の点(x,y) を2次元格子点, TYz 空 間内の点(x,y,z) を3次元格子点という.m,nを0以上の整数とすると き,次の問いに答えよ. (1) 2012/21/ysm をみたす 2次元格子点(x,y) の総数 + を求めよ. (2) x0,y0,z≧0かつ 1/3+1/13y+zan をみたす 3次元格子点 (x,y,z) の総数を求めよ. (名古屋市立大 ) ・精講 (1) 格子点をどう数えるかが問題で す。研究でx=(一定) となる直 線上の格子点を順次数えてみましたが, 大変です. そこで合同な三角形を付け足して長方形にしてみ たらどうでしょう. (2) z=(一定)となる平面による切り口を考え ると (1) が利用できます。 〈解答 (1) 0(0,0),A(3m, 0), B(3m, 5m),C(0, 5m) とおくと, 与えられた領域は △OACの周および内部である. △OAC≡△BCA であり,線分 AC 上には (0, 5m), (3, 5(m−1)), (6, 5(m-2)), ···, (3m, 0) のm+1個の格子点がある. =1/12 (15) 1 (2) ²/3x+//y+z<n & {√x+} {y≤n-z 求める2次元格子点の総数Sは, 長方形 OABC の周および 内部にある2次元格子点の総数を T, 対角線AC上の2次元格 子点の総数をLとおくと 0 S=1/12(T_L)+L=1/12(3m+1)(5m+1)-(m+1)}+(m+1) -(15m²+9m+2) 解法のプロセス (1) 三角形内の格子点の総数 ↓ 長方形を考える (2) z=(一定) 平面による切 り口を考える と変形する. z(z=n,n-1, n-2, ..., 0) を固定し, 303 3n x n y+ 5mm 0 -n-m B 3m HA IC 5n 第8章

回答募集中 回答数: 0
数学 高校生

オレンジの下線部についてです。 私の計算の問題だとは思うのですが,答えが一致しません。途中計算で、何を間違っているのでしゅう?

求めよ。 arn. る -2 r- a(1-¹) 1-r -6 link 考察 20 15 10 研究 複利計算 銀行にお金を預けたり, 銀行からお金を借りたりするときの, 利息計 算について考えてみよう。 たとえば、年利率2% でα円を1年間預金すると,1年後には 5 (a×0.02) 円の利息がつく。 したがって, 元金 α円と利息を合わせた 元利合計 S1 円は, 次の式で表される。 S=a+ax0.02=α(1+0.02)=α×1.02 S円を元金にしてもう1年間預けると, 元利合計 S2 円は S2=(ax1.02)×1.02 = a ×1.022 第1節 となる。 このように,一定期間の終わりごとに,その元利合計を次の期間の元 ふくり 金とする利息の計算は, 複利計算と呼ばれる。 年利率2%, 1年ごとの複利で,毎年初めにα円ずつ積み立てるとき, 10年間の元利合計 S円を求めてみよう α円をn年間預けると, 元利合計はα×1.02"円になる。 したがって, 10 年間に毎年初めにα円ずつ積み立てたお金の元利合計 S円は,次のようになる。 S=α(1.02+1.02²+1.02°+…… +1,0210) ( )内は,初項 1.02,公比 1.02, 項数 10 の等比数列の和であるから 1.02(1.02¹0-1) 1.02-1 S=ax- 第1章 数列 1.021≒1.219 であるから S≒11.169α となる。 毎年初めに 10万円ずつ積み立てるとすると,a=100000 であり,10 年間の元利合計はおよそ111万6900円となる。

回答募集中 回答数: 0
1/3