学年

教科

質問の種類

数学 高校生

この問題についてなのですが、別解(2ページ目)で解いた時に、√6となってしまい解けません。やり方が違うのでしょうか?それとも、√6になって解けないから進研ゼミは1ページのようなやりかたで解いているのでしょうか? 解説お願いいたします🙇🙏🙌

step 1 題でをつかむ アプローチ これを考える際にも利用できる。 とらえた特徴をもとに数学化する イメージ ( 例題あるタワーの近くに右の図のような長方形 ABCD の水平なマラソンコースがあり、頂点 A の地点に、地面に垂直なタワーが建っている。 C D 太郎さんがこのマラソンコースを地点Dから地点Aに向かって走っているとき、途中の地点Eで引 ワーの頂上を見上げたときの角度は66°であった。さらに地点Aに向かって走り、途中の地点 再びタワーの頂上を見上げたところ、その角度は78°であった。また,地点からタワーの頂上 を見上げたときの角度は30地点Dからタワーの頂上を見上げたときの角度は45℃であった。こ のとき、次の問いに答えよ。 ただし、太郎さんの目の高さは考えないものとする。 (1) タワーの高さをん (m) とする。 太郎さんが地点EとFの間にいるときの地点までの距離を (m) とするときのとりうる値の範囲はア である。 ア }に当てはまるものを、次の⑩ ⑤ のうちから一つ選べ。 角度の情報から、 「地点までの距離」 と 「タワー の高さ」の関係は三角比を用いて表せることが わかる。 よって,(1)では, FA <ょくEA となる ことから, FAやEAを三角比とを用いて表せ ばよい。 さらに(2)では,地点C,Dでタワーの 上を見上げたときの角度から, CAやDAを を用いて表すことができる。このことを用いて、 △ ACD について注目して見てみよう。 ア に当てはまる記号は ( ) イウエ オに当てはまる数値は ( 下の解説を見て、答え合わせをしよう。 タワーの頂上をGとおく。 (1) ∠GEA=66° <GFA=78°, GA = h ここで、 GA EA GA =tan66°, =tan78° より FA h h EA= FA= tan 66* tan 78° <r< tan 66° R FA<x<EAより, tan 78 ksin66" << hsin78° ktan66" <x<htan78" kcos78° <x<hcos66° くさく sin 78° sin 66° h h COS.66 COS 78 B tan 78° tan 66 (2) 地点 A.B間の距を400m とするとき, タワーの高さはイウエ 21.414 とする。 66 78 D E F A タワーの高さ E (m) 数 <DGA=450 DA Tanks th よって 5 ・アの (答) (2)(1)と同様に, GADにおいて, GDA = 45° より DA= D totny) GA tan 45] GA 3 h tan 30 また、GACにおいて, <GCA=30°より, CA = △ ACD において、 三平方の定理より, CD+DACA”が成り立つので, CD=AB=400(m)から、 オである。ただし, 400+h=3h これを解くと,h=200/2 200 x 1.414 = 282.8 (m) ・・ イウエオの (

未解決 回答数: 2
数学 高校生

数2 微分 なぜ答えのようになるのかわかりません。 Bはゼロに近づくから、0になるのではないのですか?教えてくださると嬉しいです🙇

324 基本 例題 202 変化率 00000 (1)地上から真上に初速度 49m/s で投げ上げられた物体のt秒後の高さんは h=191-4.9P(m)で与えられる。この運動について次のものを求めよ し, vm/sは秒速vm を意味する。 (ア) 1秒後から2秒後までの平均の速さ (2) 10 cm (イ)2秒後の瞬間の速さ とき,球の体積の5秒後における変化率を求めよ。 ただ p. 314 基本 指針 (1)高さんは時刻tの関数と考えることができる。 h=f(t)=49t-4.9t2 とする。 (ア) 平均の速さとは,平均変化率と同じこと。 (んの変化量) (tの変化量) を計 算。 (イ)2秒後の瞬間の速さを求めるには 2秒後から2+6秒後までの平均の速さ 均変化率)を求め, 6 → 0 のときの極限値を求めればよい。 つまり、微分係数 f'(2) が t=2 における瞬間の速さである。 (2) まず, 体積Vを時刻tの関数で表す。 これをV=f(t) とすると, 5秒後の変化率 t=5 における微分係数 f' (5) である。 taから6まで変化す (1) (ア) (49.2-4.9.22)(49・1-4.9.12) 2-1 =34.3(m/s) 解答 (イ) t秒後の瞬間の速さはんの時刻 t に対する変化率 るときの関数f(t)の平 変化率は f(b)-fla dh b-a である。 hをtで微分すると =49-9.8t dh dt については,下の dt (1)-9 求める瞬間の速さは, t=2として 注意 参照。 '=49-9.8t 49-9.8・2=29.4(m/s)=p (2) t秒後の球の半径は (10+t) cm である。 と書いてもよいが, 3 t秒後の球の体積をVcm とするとV=1(10+t dV 4 V を tで微分して dt dv=7.3 ・3(10+t)2・1=4z(10+t) 求める変化率は,t=5として 4(10+5)=900(cm²/s) と書くと関数を 微分していることが式か ら伝わる。 { (ax+b)"}' =n(ax+b)"' (ax+b) 変数が x,y以外の文字で表されている場合にも, 導関数は今までと同様に取り扱う。例え dh d ば、関数=f(t) の導関数はf(t), dt' dt f(t) などで表す。また,この導関数を求め ることを,変数を明示してh を tで微分するということがある。

回答募集中 回答数: 0
数学 高校生

ィの解説の(iii)でなんで-の方も成り立つのですか?

163 直方体 右図のような直方体 OADB-CEFG において OA=a, OB=6,DC=c とおく. \G F P ||=1,|6|=2, ||=3 とし, 2点E, Gを通る C 直線を とする. E (1) OE, OG を で表せ (2)Pを1上の点とする. このとき, OPは実数 tを用いて, OP =OE+tEG と表せる。 (ア) OP⊥EGとなるtの値を求めよ. (イ)△OEP が二等辺三角形となるときの 値をすべて求めよ. 3 B O 2 b a 1 A AA D ()() (2) (ア) OP, EG (=OG-OE) を a, L, で表し,|a|=1,||=2, 精講 ||=3, a1=c=cd=0 を用いて計算すれば, tの方程式が でてきます. これを解けば答えはでてきます. (イ) 二等辺三角形という条件は要注意です. それはどの2辺が等しいかによっ て,3つの場合が考えられるからです。 注 →3つの場合でしらべる 三辺の距離を求める (イ)|OE|=12+32=10 |OP|=|(1-t)a+t+c (1) 画 =(1−t)|a²+b²+1c1² (a+b=b.c=c.a=0) J30=12-21+1+4t²+9=5t²-2t+10 |EP|=|tEG|2=5t2 ← (i) OE OP のとき, OEPOP より,エース 253 10=5t2-2t+10 t(5t-2)=0.. t = // (t=0は不適 (OPEP のとき,|OP|=|EP|より 5t2-2t+10=5t2 2t+10=0 :.t=5 POE のとき,|EP|=|OÉRより,平日 5t2=10 t2=2. t=±√2 (1)〜() より t=±√2, 5' (2) 直方体では, 座標も有効な手段です. すなわち, A (1, 0, 0), B(0, 2, 0), C(0, 0, 3) とおくと, EG=AB だから OP= (1,0,3)+t(-1,2,0)=(-t+1, 2t3) と表せ, P(-t+1, 2t, 3), E (1, 0, 3) と座標で表して, OP2, EP2, OE' を計 算します。 解答 (1) OE=OA+OC=d+c OG=OB+OC=6+ (2) (ア)OP=OE+tEGOE+(OG-OE) =a+c+t(-a) =(1−t)a+to+c OPEG = 0 だから {(1-t)a+to+c)(-a)=0 . (t−1)|at|62=0 ||=1,||=2より t-1+4t=0 5 ( à·b=b.c=c·à=0) ポイント単に「二等辺三角形」「直角三角形」 とあったら, 場合 が3種類あることに注意 演習問題 163 右図の直方体において, AG = (5, 5, -3), H G AC=(3,1,2), BH=(3,1,-7) が成りた っている. (1) AB, AD, AE を成分で表せ. (2)直線AH 上に, △ABP が二等辺三角形 A となるように点Pをとる. (ア) <BAH= を示せ. (イ) A=tA となる実数tの値を求めよ. Di F 第8章

未解決 回答数: 1
数学 高校生

場合の数の問題で、 (3)の別解のやり方の中でマーカーしたところを 丸と棒を使ってやる解き方で教えて頂きたいです。

練習 5桁の整数nにおいて, 万の位, 千の位, 百の位, 十の位、一の位の数字をそれぞれa, b, c, @ 34 d e とするとき, 次の条件を満たすnは何個あるか。 (1)a>b>c>d>e (1) 0,1,2, (2) a≥b≥c≥dze 9の10個の数字から異なる5個を選び, 大き (3) a+b+c+dte≦6 ←a>b>c>d>e から、 い順にα, b, c, d, e とすると, 条件を満たす整数nが1つ定 0 となる。 まるから (2)0, 1, 2,..., 10C5252 (個) 9の10個の数字から重複を許して5個を選び、 大きい順に a, b, c, d, e とすると, a≧b≧c≧d≧e≧0 を満た a=b=c=d=e=0の場合は5桁の整数にならないから、 求め す整数a, b, c,d, e の組を作ることができる。 このうち, 整数nの数は 10H5-1=10+5-1C5-1=uC5-1=2002-1=2001 (個) (3) A=α-1とおくと, a≧1であるから また, a=A+1であるから、条件の式は (A+1)+b+c+dte≦6 よって A+b+c+d+e≦5 ここで, f=5-(A+b+c+d+e) とおくと, A+b+c+d+e+f=5 420 ←○5個と9個の列 を利用して,C-1と してもよい。 注意 だけ が1以上では扱いにくい から、おき換えを行う。 ① 求める整数nの個数は,① を満たす 0 以上の整数の組 (A, b, c,d,e, f) の個数に等しい。 ゆえに、異なる6個のものから5個取る重複組合せの総数を考 えて 6H5=6+5-1C5=105=252 (個) 別解 まず, a≧0として考える。 f=6-(a+b+c+d+e) とおくと, f≧0で a+b+c+d+e+f=6 これを満たす0以上の整数の組 (a, b, c,d,e, f) は *A+b+c+d+e=k (k=0.1,2,3,4,5) と して考え HotsH +H+6H+5Ha+5H5 =Ca+sCi+C2+C3 +8C4+Cs 252 (個) でもよい。 ←αが0以上の場合から αが0の場合を除く方針。 6H6=6+6-1C6=11C611C5=462(個) また, a=0 のとき, 条件の式は b+c+d+e≦6 g=6-(b+c+d+e) とおくと, g≧0で b+c+d+e+g=6 これを満たす0以上の整数の組 (b,c,d,e, g) は 5H6=5+6-1C6=10C6=10C4=210 (個) よって, 求める整数nの個数は 462-210252 (個)

解決済み 回答数: 1
1/201