数学
高校生
解決済み

この問題についてなのですが、別解(2ページ目)で解いた時に、√6となってしまい解けません。やり方が違うのでしょうか?それとも、√6になって解けないから進研ゼミは1ページのようなやりかたで解いているのでしょうか?

解説お願いいたします🙇🙏🙌

step 1 題でをつかむ アプローチ これを考える際にも利用できる。 とらえた特徴をもとに数学化する イメージ ( 例題あるタワーの近くに右の図のような長方形 ABCD の水平なマラソンコースがあり、頂点 A の地点に、地面に垂直なタワーが建っている。 C D 太郎さんがこのマラソンコースを地点Dから地点Aに向かって走っているとき、途中の地点Eで引 ワーの頂上を見上げたときの角度は66°であった。さらに地点Aに向かって走り、途中の地点 再びタワーの頂上を見上げたところ、その角度は78°であった。また,地点からタワーの頂上 を見上げたときの角度は30地点Dからタワーの頂上を見上げたときの角度は45℃であった。こ のとき、次の問いに答えよ。 ただし、太郎さんの目の高さは考えないものとする。 (1) タワーの高さをん (m) とする。 太郎さんが地点EとFの間にいるときの地点までの距離を (m) とするときのとりうる値の範囲はア である。 ア }に当てはまるものを、次の⑩ ⑤ のうちから一つ選べ。 角度の情報から、 「地点までの距離」 と 「タワー の高さ」の関係は三角比を用いて表せることが わかる。 よって,(1)では, FA <ょくEA となる ことから, FAやEAを三角比とを用いて表せ ばよい。 さらに(2)では,地点C,Dでタワーの 上を見上げたときの角度から, CAやDAを を用いて表すことができる。このことを用いて、 △ ACD について注目して見てみよう。 ア に当てはまる記号は ( ) イウエ オに当てはまる数値は ( 下の解説を見て、答え合わせをしよう。 タワーの頂上をGとおく。 (1) ∠GEA=66° <GFA=78°, GA = h ここで、 GA EA GA =tan66°, =tan78° より FA h h EA= FA= tan 66* tan 78° <r< tan 66° R FA<x<EAより, tan 78 ksin66" << hsin78° ktan66" <x<htan78" kcos78° <x<hcos66° くさく sin 78° sin 66° h h COS.66 COS 78 B tan 78° tan 66 (2) 地点 A.B間の距を400m とするとき, タワーの高さはイウエ 21.414 とする。 66 78 D E F A タワーの高さ E (m) 数 <DGA=450 DA Tanks th よって 5 ・アの (答) (2)(1)と同様に, GADにおいて, GDA = 45° より DA= D totny) GA tan 45] GA 3 h tan 30 また、GACにおいて, <GCA=30°より, CA = △ ACD において、 三平方の定理より, CD+DACA”が成り立つので, CD=AB=400(m)から、 オである。ただし, 400+h=3h これを解くと,h=200/2 200 x 1.414 = 282.8 (m) ・・ イウエオの (
B 400 400 C す 4002 D 60011タ 1309 週 A n C f A 400J2 40052=h=1=1 Ju=4002 W=40052 400 3

回答

✨ ベストアンサー ✨

四角形ABCDは正方形だと対角線を引いた場合
直角二等辺三角形ができるから1:1:√2が成り立つ。
この場合四角形ABCDは長方形であるからAC=400√2に
ならない。図2からADがタワーの高さと等しいから
ACの長さをhを用いて表さなければならない。
ACの長さを√(400²+h²)としたうえで
2ページ目のやり方で解くことができる。
比の性質を用いたあと全体をルートにする。
すると左辺と右辺のルートの中が等しくなる。

分からない場合は質問して下さい。

回答ありがとうございました!
よく理解出来ました。詳しく助かりました!

この回答にコメントする

回答

AB=400ではありますが、
ADやBCは400ではありません
(そのようなことは書いていない)
よって対角線ACも400√2ではありません

あとは特に問題ありません
そもそものところが違うということですね

回答ありがとうございました!
完全に勘違いしてました!助かりました。

この回答にコメントする
疑問は解決しましたか?