学年

教科

質問の種類

数学 高校生

なぜ第1象限で接したとき最大なのですか?

x, 2 領域と分数式の最大・最小 yが2つの不等式 x-2y+1≦0, x2-6x+2y+3≦0 を満たすとき, |最大値と最小値, およびそのときの x, yの値を求めよ。 y-2 y-2 x+1 の ・基本 122 連立不等式の表す領域Aを図示し, 指針 x+1 =kとおいたグラフが領域 Aと共有点をも つようなんの値の範囲を調べる。 この分母を払ったy-2=k(x+1) を通り,傾きがんの直線を表すから、傾きんのとりうる値の範囲を考えればよい。 (1,2) CHART 分数式 y-b 最大 最小 y-b x-a =kとおき, 直線として扱う x-a x-2y+1=0 ①, x2-6x+2y+3= 0 2 YA 解答とする。連立方程式①,②を解くと P (x,y)=(1,1) (4,212) 5 ② -=kとおくと ゆえに、連立不等式x-2y+1≦0, x2-6x+2y+3≦0 の表 す領域 Aは図の斜線部分である。 ただし, 境界線を含む。 y-2 3 (3 2 2 y-2=k(x+1) (3) RY x+1 すなわち y=kx+k+2 ③は,点P(-1,2)を通り, 傾きがんの直線を表す。 図から, 直線 ③が放物線 ②に第1象限で接するとき この値は最大となる。 ② ③からyを消去して整理すると x2+2(k-3)x+2k+7=0 このxの2次方程式の判別式をDとすると D 4 =(k-3)2-1 (2k+7)=k-8k+2 直線 ③が放物線 ②に接するための条件はD=0であるか ら, k2-8k+2=0 より k=4±√14 第1象限で接するときのkの値は k=4-√14 このとき、接点の座標は (√14-1, 4√14-12) k(x+1)-(y-2 = 0, x=-1, y=2のときん についての恒等式になる。 →kの値に関わらず定 点 (1,2)を通る。 k=4+√14 のときは, 第3象限で接する接線と なる。 次に,図から直線 ③が点 (1, 1) を通るとき,kの値は最 小となる。このとき k= 1-2 = -1/ Ak= y-2 ソニに代入。 1+1 よって 2 x=√14-1, y=4√14-12 のとき最大値 4-√14; x = 1, y=1のとき最小値- x+1 0r2+4x-y+2≦0 を満たすとき の最大値 x-2 201 3章 1 不等式の表す領域

回答募集中 回答数: 0
数学 高校生

写真見づらくて申し訳ないです。問10だけ解き方がわからないので教えていただきたいです。

18:27 KK 18:27✔ ← R6_15_nurse_mat... @ 回 2 問6~10の解答として正しいものを (1)~(5)の中からそれぞれ1つ選び 解答用紙にマークせよ。 5G Doll 74 A 2次関数f(x)=-2x+2-1.g(x)=-2x+28-1 (a,bは実数) について,xの方程式(x)=0とg(x) = 0 はと もに実数解をもつものとする。 f(x)=0の2つの実数解をα. Bとし, g(x)=0の2つの実数解を するとき、以下の 問に答えよ。 問6 α =βとなるようなαの範囲はどれか。 (1) -2<<-1 (2) -2<a<0 (3) -1<<1 (4) 0<a<2 (5) 上の4つの答えはどれも正しくない。 問7a=Bで,aとBがともに12より大きくなるような範囲はどれか。 (1) -2<<1-17 (2) -1<<1-√7 (5) 上の4つの答えはどれも正しくない。 1-√7 (3) 1-17 <<1+/7 (4) 1+/7 <<1 4 問8 α = B.y=すなわちf(x)=0とg(x)=0がともに解をもち,ayであるようなαの組 (v.b)はどれか。 (1)(1.0) (2) (1.1) (5) 上の4つの答えはどれも正しくない。 (3) (0.1) (4)(1.1) (1) 座標平面上の2つの放物線y=f(x)とy-g(x)の交点が(1, -1)であるとする。 このようなaba <b>について。 との積の値はどれか。 (2)- (5) 上の4つの答えはどれも正しくない。 問10a< 6. <y <B< であるとき, a+bはどの範囲にあるか。 (1)&<a+b (2) B <a+b <お (3) y <a+b <B (4) α <a+by (5) 上の4つの答えはどれも正しくない。 2- 3 問11~15の解答として正しいものを (1)~(5)の中からそれぞれ1つ選び、解答用紙にマークせよ。 平面上に正五角形ABCDE がある。 頂点 A. B, C, D, Eはアルファベット順に反時計回りに配置されているものど はじめに頂点に基石を置く。 そして1個のサイコロを振り、出た目の数だけ碁石を反時計回りに頂点から頂点へ る試行を繰り返す。 ただし、試行によって移動した碁石の位置は、次の試行を行うまで変えないものとする。 例えば、 試行で3の目が出たら、 碁石はA→B→C→Dと進みDに到達する。 また、 最初の試行開始後、 碁石がAに戻って Aを通過したとき、 碁石が1周したものとする。 このとき、1回の試行の結果 石がAまたはBにある確率をα. 1回の試行の結果 蕃石が1周する確率をとする。 Pe を2回繰り返した結果、 碁石が2周する確率を 試行を3回繰り返した結果 碁石がちょうど2周してAにある確率をd とする試行を回した。 03だけが右からしてAにある確定をおとする。このとき はいくら

回答募集中 回答数: 0
数学 高校生

2の(3)の解説に線を引いた部分がわからないです

実 擬力 Date k=2が2直 テスト2 2次 2 13 ①と問題を比較をして, a, b, c, 2+ 4+ 13 dの値を探しましょう. 1 1 1 1 a+ 2+ 1 2+ ⑥ + 1 1 1 4+ C+ 3 d 以上より 傾きを求めて y=ax+b に代入 y切片を求めて完成してもよい 点A(-3, 9), C (4, 16) を通 (4,16) る直線 C y-9=- 9-16 -3-4 {x-(-3)}より A (-3, 9) B(1,1) y=x+12 0 a=2,b=2,c=4,d=3 となります。 点B(1, 1), 点C (4, 16) を通る ② x = 2 答え: α = 2,6= 2,c=4,d=3 直線 y-1= 1-16 1-4 (x-1)よりy= 5x-4 2 解答・解説 2 右図の斜線部分に含まれる点 (x,y)でx,yともに整数となる ものについて考える。 周上の点 も含むと考え、次の問いに答え なさい。 y=x2 (4, 16 A 今回の題意からx, yが共に整数であることを踏まえて, x=2の直線 上にあるyの値に着目します (図の赤い部分). すなわち "x=2と直 ②の交点”以上 "x=2と直線の交点” 以下にあるyの整数値の 個数より 5×2-4≦y≦2+12 ②にx=2を代入 ①にx=2を代入 これより6≦y≦14 (-3, 9) B(1, 0 この範囲でyの値が整数になるのは y=6,7,8,9,10,11,12,13, 14の合計9個. (2)直線上には何個ありますか。 ◆解答・解説◆ (2) 地道に数えていくのも1つの方法ですが、今回は計算で解いてみま (3) 斜線部分内には何個ありますか。 す.x=2が2直線と交わるのでその交点のy座標に着目します。 2点(x1,y1)(x2,y2)を通る直線の求め方は y-y1= y-y2 -(x-x1) X1-X2 で求められる. ので、 05 ◆解答・解説 答え: 9個 (3)(2)の解き方を応用して x=-3からx=4までについて」が整数値 をとる個数を計算で出してみましょう. A(-3, 9),B(1,1) 84 85

回答募集中 回答数: 0
数学 高校生

青チャ数Bの問題です 右の写真の私の83(1)の解答について、どこからが間違っていますか?やはり最後に90°-θをしなければならないのですか?しかし私には90°-θをする理由がわかりません。 加えて解答の書き方に不備がありましたら、そちらもご教示ください 字が汚くすみ... 続きを読む

演習 例題 83 直線と平面のなす角, 直線に垂直な平面 x-2_y+1 (1) 直線l: = 4 -1 =z-3と平面α:x-4y+z=0 のなす角を求めよ。 (2)点A(1,1,0)を通り,直線x6=y-2=- 1-z に垂直な平面の方程式を 2 求めよ。 た 演習 78,80 指針▷(1)直線lと平面αのなす角は,lのα上への正射影(*)を l' とすると, 右の図のようにll のなす角 0 である。 したがって, 平面αの法線ベクトルを直線lの方向ベ クトルをdとdのなす角を とすると, 0=90°-01 または 0=01-90°である。 ! (2)直線に垂直な平面 → 直線の方向ベクトルが平面の法線 ベクトルである。 解答 (1) 直線lの方向ベクトルをd=(4,1,1) とし, 平面 α の法線ベクトルを=14,1)とする。 dとんのなす角を10° 180°) とすると d.n COS G1= dn = 4・1+(-1)・(-4)+1・1 √4°+(-1)+12√1°+(−4)'+12 1 = 20 0° 180°であるから =60° よって、直線lと平面αのなす角は 90°-60°=30° (2) 館 6 21 日 a (*) 直線l上の各点から平 面αに下ろした垂線の足 の集合を,直線lのα 上へ の正射影という。 A 4+4+1_9_1 √18 18 18 2 h z-C

回答募集中 回答数: 0
1/35