学年

教科

質問の種類

数学 高校生

この解説を見せて頂けませんか? 出来れば明日までに知りたいです! 重要問題演習38P,60.61

38 箱の中に10本のくじが入っており、そのうち3本が当たりくじである。 このくじを10人が1本 つ順に引くとき,次の確率を考える。 ただし、引いたくじはもとに戻さないものとする。 RIPRE ① 3番目の人が当たりくじを引く確率 ②7番目の人が当たりくじを引く確率 ③ 3番目の人と7番目の人が当たりくじを引く確率 ア ナ (1) まず, ①について考える。 1番目 2番目 3番目にくじを引く人が当たりくじを引く事象をそれ ぞれA, B, C と表し, P(C) の値を求めよう。 P(A)= イウ P(A∩B∩C)= 難易度 ★★★ 引く条件付き確率はPA(B) = 引いたとき, 3番目の人も当たりくじを引く条件付き確率は PanB(C) = カ キ の解答群 である。 また,1番目の人が当たりくじを引いたとき, 2番目の人も当たりくじ 0 10 C3 コの解答群 9C₂ ア ウ 9P2 目標解答時間15分 × ① 10P3 エ オ である。 ①について, 左から3番目に当たりくじがある並べ方は 人が当たりくじを引く確率は ク ケコ I である。さらに、1番目と2番目の人がともに当たりくじを カ SELECT SELECT 90 60 ある。 しかし、同じやり方で②,③を考えることは難しい。 そこで、 別の試行に置き換えて考える。 10本のくじをk1,k2, ......, kio と表すことにし,k1,k2,ks が当たりくじであるとする。この ■本のくじを横一列に並べる試行を考える。この試行において, くじの並べ方の総数は サ 通 シ通りあるから3番目 である。他の場合も同様に考えると,P(C) = である。 ② 10P7 ③10! であるから, ②39P2 ③ 9P7 ④ 39P7 ⑤9! ク 3.9! で コ (3) 当たりくじを◯, はずれくじを●で表すことにし、3個の○と7個のを横一列に並べる試行を 考える。○と●の並べ方の総数は ス 通りである。 ①について、 左から3番目に○がある並べ t 通りあるから3番目の人が当たりくじを引く確率は 方は ス ⑩ 10C3 Ł の解答群 率は ① 10P3 ② 10P7 ③10! の解答群 9C2 ① 9P2 ②3.9P2 ③ 9P7 4 3.9P₁ ク ケコ (2) (3) のいずれかの考え方を用いると、 ②について, 7番目の人が当たりくじを引く確率 ツ と求 [ニヌネノ である。 ソ は ■タチ めることができる。 (4) これまでの箱とは異なる箱に100本のくじが入っており, そのうち10本が当たりくじである。 このくじを100人が1本ずつ順に引くとき, 3番目 7番目 100番目の3人が当たりくじを引く確 ⑤ 9! ⑥ 3.9! である。 であり、③について, 3番目の人と7番目の人が当たりくじを引く確率は ■テト (配点 15) 38 43 <公式・解法集 35

回答募集中 回答数: 0
数学 高校生

解の存在範囲の問題です (2)でtの存在範囲に持ち込むのは分かるのですが、|x|≧1が与えられているのに|X|で場合分けしているのは何故ですか

ポイント①! 1: y = -tx + ということです。 t² 2 (1) 直線OA の傾きは よって, 1:y=-t + t² 1 を満たす実数t (t≧1) が存在する + Y = -tX+ 2 2 ポイント! 最小値の 場合分け 2 (2) (X,Y) を通る が点 (X,Y) を通る y = − 1 ( x − 2²2 ) + 12/1/2 問題33の解答 1 :: 1:y=-tx + + 2 2 519 Explore (t0) であるから、1の傾きは t y .. -1 X -1 1 求める条件は, f(X) = - X° − 2Y + 1 ≦ 0 1 Y2-=X² + 2 1 O せん。つま 1 t² 1 存在条 ⇒ Y = -tX + + を満たす実数t (t≧1) が存在する ⇔f-2X-2Y + 1 = 0 を満たす実数t (t≧1) が存在する 2 2 f(t) = f - 2Xt − 2Y + 1 = (t - X) - X-2Y + 1 とする。 (i) |X|≧1 (X ≦ -1, X≧1) のとき←頂点で最小となるとき y=f(t) y=f(t) -11 A(t,1 X 22 X≦1-1≦X≦1) のとき← /y = f(t) ポイント [2]! 求める条件は, ✓ -1 X 1 f(-1)=2X-2Y+2≦0 または ← x=1のとき y≧x +1 または y≧-x+1 一区間の端点で最小となるとき y=f(t) t コメント! op -1 f(1)=2X-2Y+2≦0 ..Y ≧ X + 1 または Y≧ - X +1 以上 (i), (i) より求める範囲は次のとおり。 x≧1のとき 1 =-x²²+ 1 2 X 1 最小値をとるのがt=1のときなの かt=-1のときなのかを場合分け しなくても 「または」 でまとめて考 えられる(メント! 参照)。 -1 y 01 y=x+1 境界を含む y=-x+1 p=12/2x+1/12/2 -x² y=- ① 求める図では, 放物線と直線は接しているんだ。 y=-12x+1/1/28y=x+1からyを消去すると (x+1)^2 = 0 となるから, 放物線と直線はx=-1で接しているんだ。 放 物線と直線y=-x+1についても同じだよ。 ②通過領域の問題は入試でも頻出の重要問題だよ。 本間では結局の存 在条件に帰着させるんだけど,この部分は問題32 と同じ考え方だね。 ③ 2次方程式が解をもつかどうかは, 問題3でも学んだように, 最小値に ついて考察するから、 問題33 133 Cha 図形と方程式

回答募集中 回答数: 0
数学 高校生

なぜこれになるのですか?

Ⅱ 三角関数 解答 Si cos a 93 合成 (1) f(x)=sinx+√3cosx について, がすべての値をとって変化するとき, f(x) の最大値、最小値を求めよ TC (2) が0の範囲を変化するとき, f(x) の最大値、最小値を求めよ。 (上智大) x であるから, -2≦2sinx+ 2670 f(x)=sinx+√3cosx=2sinx+- TC (1)xがすべての値をとって変化するときx+ // もすべての 値をとって変化する. よって 1985 ČELE M-1≤sin(x+ T と変形できる. 3 最大値2, 最小値-2 sin x+ 25 であるから,12sin(x+ ン 2 x+1/2となる。したがって T ≤1>83Jd 3 5 (2) 20よりx1であるから 3 6 73 ≤1 1 合成は次の図を使うと便利である 2とな 最大値2,最小値1 (0+00) 単位円から,高さの変化 805 する範囲を読み取る Y 163 TIES-8200-00 て、 √√3 2 P (1,v3) 50 1 Y 0 解説講義 50>>UNION サインとコサインが asin0 + bcos0 という形で混ざっている場合、 行って,rsin(0+α)というサインだけの式にして考えるとよい。 実際に rsin(0+α)の形に合成をするときには,次のような手順が分かりやすい. (手順1)原点を 0 とする座標平面上に点P(a,b) をとる. (手順2)線分 OP の長さと、 動径 OP を表す角 α を求める. (手順3)求めたrと α を用いて rsin (0+α) と表す. 極めて頻出の重要問題である. 単位円を使って “高さの変化する範囲がサインの値の変化す なお,本問のように, 合成を行った後に三角関数の式のとり得る値の範囲を考える問題は る範囲”と解釈するところを十分にトレーニング

未解決 回答数: 1
数学 高校生

至急です🙇🏻‍♀️ (1)の解説お願いします 重要問題集2024共通テスト

47 難易度 ★★★ 目標解答時間 15 分 SELECT SELECT 90 60 花子さんの住んでいる町内で毎年行われているクリスマス会では、参加者全員にスナック菓子を1 袋ずつ配ることになっている。 今年は、花子さんがスナック菓子を買うことになり, 1年前のクリス マス会を知っている人に話を聞いた。 1年前は,参加者は30人で, スナック菓子は, 3袋入りの箱と7袋入りの箱の2種類が売られていた。 3袋入りをa箱,7袋入りを6箱買うと、30人全員に1袋ずつ残さず配ることができたという。ただし, はともに0以上の整数とする。このことから アイ 3a+76 が成り立ち、①を満たす a, bの組(a,b) は, (a,b)=(ウェ 組だけ存在する。 (1) 花子さんは,参加者が何人であれば,3袋入りと7袋入りの箱をうまく組み合わせて買うことで, スナック菓子を参加者全員に1袋ずつ残さず配ることができるかに興味をもった。参加者全員に1 袋ずつ残さず配ることができない場合について考えよう。 THI 3袋入りをx箱,7袋入りを箱買うとする。 ただし,x,yはともに0以上の整数とする。 (i)yが3の倍数のとき、y=31(10以上の整数)と表すと 7 3x+7y= (x+ ケ 1) であり, 3x+7yと表される数はコ以上の3の倍数すべてである。 (i)yを3で割った余りが1のとき, y = 3l+1(Zは0以上の整数)と表すと 1 3x+7y=サ (x+ l + ス + セ (ただし, > であり, 3x+7yと表される数は3で割った余りがソロである整数であり, そのうち最小のも のはタ である。 4 (yを3で割った余りが2のとき, (i), (ii)と同様に考えると, 3x +7y と表される数は3で割っ た余りがチである整数であり, そのうち最小のものはツテである。 オ カ キ の2 6 個ある。 (i)~(i)より, 3x+7y (x, y はともに0以上の整数)と表されない自然数は全部でト すなわち, 3袋入りと7袋入りの箱をどのような組み合わせで買ったとしても、参加者全員に1 袋ずつ残さず配ることができない参加人数は全部でト通りある。 (2) 今年は別のスナック菓子を買うことにした。 そのスナック菓子は2袋入りの箱, 5袋入りの箱の 2種類が売られており、中身のパッケージのデザインも異なっていたため, クリスマス会を盛り上 げるため,2袋入り 5袋入りのどちらも1箱以上買うことになった。 このとき2袋入りと5袋入りの箱をどのような組み合わせで買ったとしても、スナック菓子を (配点20) 参加者全員に1袋ずつ残さず配ることができない最大の参加人数はナニ人である。 10 【公式・解法集 48 整数の性質

回答募集中 回答数: 0
数学 高校生

数学共通テスト重要問題演習の116(2)のみ分かりません(><)必ず良い評価をするので至急回答いただけたら嬉しいです。

116 と表される。 ア ずつ選べ。 OD OD = sOA+(1-s)OQ=sOA+(1-s)(ア と表される。また,点Dは直線CP上にあるから,t を実数として OD = tOP + (1-t) OC=t( イ +(1-t) OC② 四面体OABCにおいて, 2点P, Q をそれぞれ辺 AB, BC 上に AP:PB = 1:2, BQ:QC=1:2 となるようにとり、2直線AQ と CP の交点をDとする。 OD OA, OB, OC を用いて表そう 点Dは直線 AQ上にあるから, s を実数として イ ア の解答群 3 1 の解答群 難易度★★★ ◎/OB+/OC①0B+/OC② L/OB+OC に当てはまるものを、次の各解答群のうちから一つ ⒸOA+OB ⒸOA+OBOA+OB ① ② より OA + SOA+(1-s)(ア = t であり, 4点O, A, B, C は同一平面上にないから,s= エ キ OB + OC 3 イ )+(1-t) OC これより, 例えばx= 目標解答時間 である。 と求まり,yをxを用いて表すと, y = イ)+B(ア であり, 4点 0, A, B, C は同一平面上にないから, α = +yxOA のとき、y= x xt + タ チ 18分 ウ I である。 である。 A ③ OB +/OC t= SELECT 90 ③OA+/OB 次に、辺OA上に OR = x OA (0<x<1) を満たす点 R をとり, 平面 PQR と直線 OCの交点を Sとする。 (1) 辺OA上を点Rが動くと, 点Sもそれに応じて動く。 その様子を調べてみよう。 点 S は直線 OC 上にあるから,yを実数として, OS = yOC・・・ ③ と表される。 また、点Sは平面PQR 上にあるから, α, β,yを実数として OS = α OP + BOQ + y OR ④ と表される。 ただし,α+β+y=ク である。 ③,④より y OC = オ 力 ケコ y, β=サ 0 B と求まり, S y, Y = 2 C XC y

回答募集中 回答数: 0
1/3