学年

教科

質問の種類

数学 高校生

エオの出し方を解答より具体的に教えてください🙇‍♀️

数学Ⅰ データの分析 共通テスト 共通テスト 重要度 34 変量変換による統計量の変化 差が 重要度 Skill 定義に従って考える! 変量xの平均値をx,分散をs.2とし,変量x と変量yの共分散を 8xy とする。 z=ax+b (a, bは定数) として新しい変量zをつくる。 Z の平均値はz=ax+b 0.9 の分散 s22はs=a's Sx Z との共分散 Szy は Szy=axy 数学Ⅰ Check zとし, z4x+1とするとき, zの平均値は 2つの変量xyがあり、xの平均値 x を 2, 標準偏差 Sx を2とする。 アイ, 標準偏差 sz は ウ である。 また z との相関係数 rzyはxとyの相関係数 rxオ 倍である。 解答 回出 z = -4x+1=-4・2+1=-7 xzの分散をそれぞれ Sx', sz2 とする。 Sz = √√sz² = √(−4) ² s² = 4sx = 4·2 = 8 xとyの共分散をxyzとyの共分散を Szy, yの標準偏差を sy とする。 Szy4sxy より Szy -45xy rzy = = SzSy 4SxSy 4.Sx=(-1) rxy 4 SxSy x 10 深める よって, rzy は rxyの1倍である。 「ax+b と yの相関係数」が「xとyの相関係数」 とどのように違うかは、順を追って次のように 考えるとよい。 まず, ax+b について 平均値: 各値がα倍になり増えると,平均値も倍されても増える。 偏差 : 値axi + b の偏差は平均値 ax +b との差なので α(xx) 方が強い。 分散: 以上とった (0) つまり,bを加えることは影響せず, αだけが影響して,α倍になる。 分散は偏差の2乗の平均値。 偏差がα倍なので,分散は2倍になる。 標準偏差 : (標準偏差)=(分散)より,分散がα 倍なら標準偏差は = |a|倍になる。 したがって,ax+b と yについて はない。 共分散共分散は2変量の偏差の積の平均値。 一方の変量だけ偏差がα 倍になるので,共 分散もα倍になる。 (共分散) 相関係数(相関係数)=(標準偏差の積) より倍になる。すなわち,4>0のときはも そのキキ <0のときは1倍になる。

未解決 回答数: 0
数学 高校生

まるで囲った2枚目の式が分かりません💦

(2)ある地域のタクシー会社のタクシー料金は、最初の1kmまでが500円で,そ の後は走行距離に応じて100円ずつ加算される。また,目的地に到着したときに 支払う料金を運賃という。 H ~90円 近年、キャッシュレス決済 (現金を使用せずにお金を払う方法) への対応やド ライブレコーダーの設置, アルコール検知器を用いた検査の義務化などによりタ クシー会社の負担が増したため、 来年から次のように運賃を改定することを検討 している。 【キャッシュレス決済の場合】 目的地に到着後の運賃を3%増額し、100円未満の金額を切り捨てた金額を 改定後の運賃とする。 【現金払いの場合】 目的地に到着後の運賃を3%増額し、100円未満の金額が50円以上のときは その金額を100円に切り上げ, 50円未満のときは100円未満の金額を切り 捨てた金額を改定後の運賃とする。 改定前に6000円だった運賃について、 改定後の運賃は 103 キャッシュレス決済の場合はイウ×100円 6000x leg 現金払いの場合はエオ×100 円 ・60x103 6180 となる。 =6100 運賃の改定後に200円の値上げとなるような改定前の運賃の範囲は (+200)円 xx100 キャッシュレス決済の場合はカキ×100円以上 クケ ×100円以下 103 (x+200)×100 現金払いの場合は コサ×100円以上 シス×100円以下 103x+206 100 である。 運賃の改定後にキャッシュレス決済と現金払いの差が最大となるような改定前 の運賃のうち、最小の運賃はセソ ×100円である。 キャッシュしす

回答募集中 回答数: 0
数学 高校生

解き方を教えて下さい!お願いします

重要 1 1辺の長さが2である立方体 ABCDEFGHの辺ABの中点をMとする。 線分 MGの長さはア∠DGM=イウ であるから, △DGMの面積は 3 図形と計量 で ある。 また, 四面体 CDMG を考えると,その体積は オ となり, 頂点Cか カ ら平面 DGM へ下ろした垂線 CP の長さは キ ク である。 POINT! 空間図形 - 垂線の長さ 平面図形を取り出して考える (断面図も有効)。 四面体の高さと考え、 体積を利用。 錐体 (四面体, 円錐など) の体積 ×(底面積)×(高さ) 3 解答 辺EFの中点をN とすると, D ◆三平方の a C 定理 b MI a2=62+c2 P C CA △NFG において、 三平方の定理により NG=√/FG2+NF2=√22+12=√5 AMNGにおいて、 三平方の定理により MG=√NG2+MN2=√(√5)2+22=73 △DGM において, MD=NG=√5,DG=√2°+2°=2√2 であるから, 余弦定理により ◆△MNGを取り出す。 E N 2 F M √5 D =1/23・S・CP ·S.CP よって、1/13-1/2.3. また,四面体 CDMG の体積 V は, △CDM を底面とすると 2= ・・△CDM・CG= V-13ACDM・CG=1/31 (1/2・2・2)・2 - 4 3 オ 3 この四面体を,△DGM を底面として体積を考えると 4 cos∠DGM= 32+(2√2)-(√√5)² 3 2√2 1 2.3.2/2 √2 よって ゆえに, △DGMの面積Sは ∠DGM=イウ45° S=1/2・3・2√2 sin 45°=1/2・3・2√2 1/12 =13 ◆△DGM を取り出す。 取り 出した図形を別に図にか くとよりわかりやすい。 ← cos DGM.d _MG²+DG2-MD2 2MG DG 基 22 MG DG sin ZDGM S=1 2 0 基 23 1 3 ← x(底面積)×(高さ) ≠4 •3•CP から CP=3 1 ◆CP を高さと考える。 体積 は同じ。 x(底面積)×(高さ) 3 練習 11 右の図のような直方体 ABCDEFGH において, AE=√10, AF=8, AH=10 とする。 A D B E ウ H このとき,FH=アイ であり, cos∠FAH= であ I F る。また,三角形AFHの面積はオカキ である。 したがって, 点E から三角形 AFHに下ろした垂線の長さ G コ は である。 Lin サ

未解決 回答数: 0
1/42