学年

教科

質問の種類

数学 高校生

数Ⅱの問題です (y + z)/x = (z + x)/y = (x + y)/z の時、この式の値を求めよ。の問題の解答で … y + z =xk …① z + x =yk …② , x + y =zk …③ ①+②+③から とあるのですが、なぜ①②③を足すのですか。

基本 例題 26 比例式の値 00000 y+z z+x= x+y のとき、この式の値を求めよ。 x y 基本25 CHART & SOLUTION 比例式はんとおく 等式の証明ではなく,ここでは比例式そのものの値を求める。 y+z=z+x=x+y=kとおくとy+z=xk, z+x=yk, x+y=zk x y 2 この3つの式からkの値を求める。 辺々を加えると,共通因数 x+y+z が両辺にできる。 これを手がかりとして, x+y+z またはの値が求められる。 求めたんの値に対しては, (母)≠0(x=0, y = 0, z≠0) を忘れずに確認する。 解答 分母は0でないから xyz=0 y+z=z+x=x+y=kとおくと x y z 0> 0< y+z=xk...1,z+x=yk...②, x+y=zk ③ ①+②+③ から よって ゆえに 2(x+y+z)=(x+y+z)k (k-2)(x+y+z) = 0 k=2 または x+y+z=0 [1] k=2 のとき ① ② ③ から ←xyz≠0 x≠0 かつ y≠0 かつ z=0 d $100.0 y+z=2x... ④, z+x=2y… ⑤, x+y=2z… ⑥ ④ ⑤ から y-x=2x-2y よって x=y x+x=2z よって x=2 x+y+z が 0 になる可 能性もあるから, 両辺を これで割ってはいけな い。 これを⑥ に代入すると したがって x=y=z x=y=z かつ xyz ≠0 を満たす実数x, y, zの組は存在する。 [2] x+y+z=0 のとき y+z=-x k=y+z=-x=-1 よって XC XC [1], [2] から, 求める式の値は 2, -1 O 例えば x=y=z=1 例えば, x=3, y=- z=-2 など,xyz かつ x+y+z=0 たす実数x, y, zの 存在する。

回答募集中 回答数: 0
数学 高校生

比例式 、サイクリックな式の本質は、 軌跡領域の逆像法でパラメータの存在条件を考える時と同じですか?

11 比例式, サイクリックな式 xy+yz+zx (ア) x+4y y+4z z+8エ 3 をみたす正の実数x, y, z について, 2+12+22 6 4 (椙山女学園大) である. I (イ) y Z y+z 2+1 このとき,この式の値は,x+y+z=0のとき x+y x+y+z=0 の (麻布大獣医) とき である. 比例式はとおく 条件式が ==形(ry:z=a:b:cを意味する比例式)で与えら abc れたときには、この分数式の値をkとおくのが定石で、こうすると計算にのせやすい。 サイクリックな式 (イ)の式の値をとおくと,r=k(y+z) などとなる.ここで, x,y,zをそれぞれy,z, xに入れ替えていくと, x=k(y+z) ⑦ y=k(z+x) ⇒ z=k(rty)..・・・・ウ となり,もう1回やると⑦⑦になる. このように,文字がグルグル回る, ア~⑦を サイクリックな式を言うが、この3式を辺ごとに加えると対称式になり,扱い易くなる. 解答 (ア) x+4y y+4z 2+8x 3 =k (k>0) とおくと, x, y, zが正により, k>0 6 4 x+4y=3k ①y+4z=6k... ②, z+8x=4k...... ③ ①によりェ=3k-4y で, これと③から z = 4k-8=32y-20k これを②に代入して, y+4(32y-20k)=6k 等式の条件は,文字を消去するの が原則 86 2 129 3 y= -k= ==k, I=3k-- 4 -k, z=4k- -k= -k 3 3 E そのままk=31 (1>0) とおいて,r=l, y=21,z=4l 大変 1-21+21-41+41.1 _2+8+4 14 2 よって, 求値式= = 2+(21)+(41) 2 1+4+16 21 23 I (イ) y 2 =k...... ① とおくと, y+z z+x x+y x=k(y+z) +42-6 2+8x-4f 1 k>o ②,y=k (z+x)...... ③, z=k(x+y)......④ ②+③ + ④により,x+y+z=2k(x+y+z) 1°x+y+z≠0のときは, これで割って,k= 1 2 2° x+y+z=0 のとき, y+z=-xとなり,①によりk=-1 注1°のとき,②③によりx-y=1/2 (y-x)となるから,r=y よって①とから,r=y=z となる. ←前文参照. 11 演習題 (解答は p.28) y+4(223-200 36 b+c c+a a+b b+c とする.このとき、 の値は (1) であり,a+b+c=0 a b C a a+b+c+6abc のときの の値を求めると (2) である. (福岡大) (b+c)a 後半は1文字消去すれば 解決する。

回答募集中 回答数: 0
数学 高校生

24. [2] なぜa=b=cならば abc≠0を満たすすべての実数a,b,cについて成り立つ と言えるのですか? また、a≠0,b≠0,c≠0でなければならないのを まとめてabc≠0と表しているのですか?

44 基本例題 24 比例式と式の値 (1) x+y_y+z_z+x (0) のとき, 6 (2) 解答 (1) 5 b+c a x+y 5 よって = a 練習 3 24 指針 条件の式は比例式であるから, 比例式は=kとおくの方針で進める。 A (1) = とおくと x+y=5k, y+z=6k,z+x=7k これらの左辺は x,y,z が循環した形の式であるから、Aの辺々を加えてみる>まず、結 (1) a, E すると, x+y+z を k で表すことができる。 右下の 検討 参照。 (2) も同様。 - c+a b y+z 6 (2) 分母は0でないから b+c a+b C (1) x+y=5k ① +② +③ から 2(x+y+z)=18k したがって x+y+z=9k ④-②, ④-③, ④-① から, それぞれ d) A x=3k, y=2k, z=4k c+a b a+b C z+x 7 ①,y+z=6k xy+yz+zx 6k²+8k² +12k² ) x2+y2+22 6 (2)__a+1 -=kとおくと, k=0で a のとき、この式の値を求めよ。 b+c=ak ① +② + ③ から 2(a+b+c)=(a+b+c)k よって (a+b+c) (k-2)=0 a+b+c=0 または k=2 ゆえに [1] a+b+c=0のとき b+c=-a よって k= (3k)²+(2k)²+(4k)² 26k2 26 29k2 29 abc≠0 b+c_a =kとおくと ①,c+a=bk ・②a+b=ck a xy+yz+zx x2+y2+22 ②,z+x=7k ...... db=2,sld =-1 x+y=y+z_z+x 7 b+1 [2] k=2のとき, ①-② から a=6* ②-③ から b=c よって, a=b=cが得られ, これは abc≠0 を満たすすべ ての実数a,b,c について成り立つ。 [1], [2] から,求める式の値は 8 -1, 2 a+b+d (0) m2. の値を求めよ。 AFFE DE 7th- bo-do x²-1² 要例題 C abc=1, であること a+b+c 検討 ①~③の左辺は, x, 循環形 ( x y zxd 次の式が得られる)に いる。 循環形の式は、 加えたり, 引いたり 処理しやすくなること ART <x:y:z=3:2:41 答 3・2+2.4+4・3 32 +22+42 と計算することもで (2) a, abc≠0⇔a=0 かつ 60 かつ よって, ること P=(a- bc=1と 0の可能性があるから 両辺をa+b+cで割 はいけない。 (*)k=2のとき, ①, よって a=b (分母) 0の確認。 って したがって _Q=(a- b+c=2actoに P ここで,( a² +6² F この2式の辺々を引よって b-a=2(a−b) したがっ 5 5 a

回答募集中 回答数: 0
1/3