数学
高校生

数Ⅱの問題です

(y + z)/x = (z + x)/y = (x + y)/z の時、この式の値を求めよ。の問題の解答で

y + z =xk …① z + x =yk …② , x + y =zk …③
①+②+③から
とあるのですが、なぜ①②③を足すのですか。

基本 例題 26 比例式の値 00000 y+z z+x= x+y のとき、この式の値を求めよ。 x y 基本25 CHART & SOLUTION 比例式はんとおく 等式の証明ではなく,ここでは比例式そのものの値を求める。 y+z=z+x=x+y=kとおくとy+z=xk, z+x=yk, x+y=zk x y 2 この3つの式からkの値を求める。 辺々を加えると,共通因数 x+y+z が両辺にできる。 これを手がかりとして, x+y+z またはの値が求められる。 求めたんの値に対しては, (母)≠0(x=0, y = 0, z≠0) を忘れずに確認する。 解答 分母は0でないから xyz=0 y+z=z+x=x+y=kとおくと x y z 0> 0< y+z=xk...1,z+x=yk...②, x+y=zk ③ ①+②+③ から よって ゆえに 2(x+y+z)=(x+y+z)k (k-2)(x+y+z) = 0 k=2 または x+y+z=0 [1] k=2 のとき ① ② ③ から ←xyz≠0 x≠0 かつ y≠0 かつ z=0 d $100.0 y+z=2x... ④, z+x=2y… ⑤, x+y=2z… ⑥ ④ ⑤ から y-x=2x-2y よって x=y x+x=2z よって x=2 x+y+z が 0 になる可 能性もあるから, 両辺を これで割ってはいけな い。 これを⑥ に代入すると したがって x=y=z x=y=z かつ xyz ≠0 を満たす実数x, y, zの組は存在する。 [2] x+y+z=0 のとき y+z=-x k=y+z=-x=-1 よって XC XC [1], [2] から, 求める式の値は 2, -1 O 例えば x=y=z=1 例えば, x=3, y=- z=-2 など,xyz かつ x+y+z=0 たす実数x, y, zの 存在する。
比例式

回答

まだ回答がありません。

疑問は解決しましたか?

この質問を見ている人は
こちらの質問も見ています😉