学年

教科

質問の種類

数学 高校生

やり方教えて欲しいです😭

学習した日 月日 ( 2次方程式 38 2次方程式の利用(1) 立宜野 項 18m, 横9mの長方形の花畑に 右の図のような同じ幅の道をつくり たい。 花畑の部分の面積を42m²に (目標 具体的な問題を2次方程式を利用して解くことができる。 9m- DOD DD> DDDD xm =0の解が3 -4)=0 ると、 2=0 5. a. D> するには,道の幅を何mにすればよ 8m いですか。 (1) 道の幅をxmとすると, 花畑の縦の 部分は (8-x) mと表すことができる。 横の長さを表す式を求めなさい。 xm 宜野湾市立嘉数中学校 基本事項 2次方程式を利用して問題を解 <手順 ①求めるものをェとおく。 ②数量間の関係をつかみ、2次 方程式を立てる。 ③ 2次方程式を解く。 ④求めた解が問題の答えに適し ているかどうかを確かめ, 答 えとする。 きは、そのわけも書く (2)面積が42m²ということから, xを求めるための方程式をつくりなさい。 問題に適していない解があると (3)(2)でつくった方程式を解いて道の幅を求めなさい。 道幅が8m以上になる ことはあり得ない。 練習② 縦が36m, 横が45mの長方形の土地に、 右の図のように、 縦, 横同じ幅の道路をつけて残りを畑にしたい, 畑の面積が 1540m²になるようにするには道路の幅を何mにすればよい ですか。 (1) 道の幅をxmとして縦と横の長さを表す式を作りなさい。 もうに 縦 m 横 (2)面積が1540m²ということから, 方程式を作りなさい。 36m xm -45m xm m 道路を確認 1 のように移動し ても畑の面積は変わらない。 (3)(2)の方程式を解き、 道路の幅を求めなさい。 もう! 練習3 1辺がxcmの正方形の縦の長さを4cm短くし, 横を2倍にすると, 面積が90cmになった。 もとの正方形の面積を求めなさい。 xcm xcm xcm 4cm 自己評価 (5) とても まあ, できた できた

回答募集中 回答数: 0
数学 高校生

解放2です。

基本例 点がF(3,0), F'(-3, 0)で点A(-4, 0) を通る楕円の方程式を求めよ。 p.585 基本事項 重要 149、 解法 1. 焦点の条件に注目。2つの焦点はx軸上にあり、かつ原点に関して対称であ あるから求める楕円の方程式は 1 (40) とおける。 焦点や長軸短軸についての条件に注目し, a, bの方程式を解く。 解法2. 楕円上の点をP(x, y) として、 楕円の定義 [PF+PF' = (一定)」に従い, 点 の軌跡を導く方針で求める。 |解法 1. 2点F(30) F'(-3, 0) が焦点であるから, 求 1焦点は2点 める楕円の方程式は 4-2 + 92 b2 ここで a2-b2=32 =1 (a>b>0) とおける。 A (-4, 0) は長軸の端点である から a=|-4|=4 y √7 (√a²-b², 0). (-√a²-6ª, 0) 焦点のx座標に注目。 y座標が0であるから, 楕円の頂点。 a b よって62=q-32=42-9=7 ゆえに、求める楕円の方程式は F' -3 0 3 4x ここではの値を求め なくても解決する。 x2y2 長軸 17 va2-62 =1 7 すなわち +2 =1 16 7 PがAに一致するとき? 解法 2. 楕円上の任意の点をP(x, y) とすると PF+PF'=AF+AF'=|3-(-4)|+|-3-(-4)|=8 <F, F′, A はx軸上の よって ゆえに √(x-3)2+y2+√(x+3)+y2=8 <PF+PF'=8 √(x-3)2+y2=8-√(x+3)2+y2 両辺を平方して整理すると 16√(x+3)2+y2=12x+64 両辺を4で割って, 更に平方すると 整理して 16(x2+6x+9+y2)=9x2+96x+256 7x2+16y2=112 よって、求める楕円の方程式は 16 7=1 ここでがなくな 次のような楕円の方程式を求めよ。 9 (1) 2点(20)(20) 焦点とし、この2点からの距離の和が6 (2)楕円 x2y2 3 5 =1と焦点が一致し、 短軸の長さが4 (3)長軸がx軸上,短軸がy軸上にあり、2点(-2.0) (1,2)を通る。 p.603

回答募集中 回答数: 0
数学 高校生

青線部の所の意味が分かりません!

(?) (2)) 基本 例 20 極限の条件から数列の係数決定など 00000 ) 数列 {an) (n=1, 2, 3, .....) が lim (3n-1)α=-6を満たすとき. limna である。 918 [類千葉工大] lim(n+an+2-√n-n)=5であるとき、定数αの値を求めよ。 p.34 基本事項 2.基本 18 針 (1) 条件 lim (3n-1)a=-6を活かすために, na-3n-1) α × n 変形 3n-1 77 数列 3n-1 は収束するから、次の極限値の性質が利用できる。 liman=α, limbn=β⇒lima,b=aβ (a,βは定数) 700 818 (2) まず 左辺の極限をαで表す。 その際の方針は p.38 基本例題18 (3) と同様。 41 (1) nan=(3n-1) anx n であり Ana を収束することが 3n-1 lim(3n-1)an=-6, n 1 1 lim =lim わかっている数列ので 表す。 72-00 3n-1 12-00 1 3 3 ? n 数 2 2章 数列の limnan=lim(3n-1)anxlim よって 72100 12-00 1 =(-6). =-2 2) lim(√n2+an+2-√n²-n) n100 (n+an+2)-(n²-n) =lim n11 √n²+an+2+√n²-n =lim 718 (a+1)n+2 √n² +an+ 2 + √√n ² -—n a n (a+1)+ 2 2 n 1+ + + 1- n² n n-co 3n-1 =lim a+1 N18 1 2 n a+1 よって、条件から =5 2 したがって a=9 mil-mila 極限値の性質を利用。 分母分子に √√n²+an+2+√√n²-n を掛け、分子を有理化。 分母分子をnで割る。 n0 であるから n=√n² αの方程式を解く。 次の関係を満たす数列 {az} について, liman と limnan を求めよ。 ア) lim (2n-1)an=1 12-00 81U (イ) lim n→∞ 2an+1 an-3 =2 n→∞ lim(√m²+an+2-√n²+2n+3)=3が成り立つとき, 定数 α の値を求めよ。

回答募集中 回答数: 0
数学 高校生

193.3 この記述でも問題ないですよね??

304 00000 基本例題 193 導関数と微分係数 (1) 関数f(x)=2x+3x2-8x について, x=-2における微分係数を求めよ。 (2) 2次関数f(x) が次の条件を満たすとき, f(x) を求めよ。 A (1)=-3. f' (1)=-1, f'(0)=3 (3) 2次関数f(x)=x2+ax+bが2f(x)=(x+1)f'(x)+6を満たすとき,定数の b の値を求めよ。 基本191) Webs 指針▷ (1) x=q における微分係数 f'(a) は,導関数 f'(x) を求めて, それに x = a を代入する。 簡単に求められる。 f(x)は2次関数であるから, f(x)=ax²+bx+cとする。アーム ②2 導関数 f'(x) を求め, 条件をa, b, c で表す。(笑) ③3 a,b,c の連立方程式を解く。 (3) 導関数 f'(x) を求め,条件の等式に代入する。一(d+xp(s+xmi= →xについての恒等式であることから, α, 6の値が求められる。 (2) 解答 (1) f'(x)=2.3x2+3・2x-8・1=6x²+6x-8 したがって f'(-2)=6・(-2)^+6・(-2)-8 =4 J3 (0+20) (2) f(x)=ax2+bx+c (a≠0) とすると (1) f'(x)=2ax+b() a+b+c=-3 2a+b=-1 f(1)=-3 から f' (1)=-1から f'(0)=3 から これを解いて したがって (3) f(x)=x2+ax+bから 与えられた等式に代入すると b=3 a=-2,6=3, c=-4 f(x)=-2x2+33-4 f'(x)=2x+α 1-2x3. = (d+xb) = ( 2(x2+ax+b)=(x+1)(2x+α)+6 整理して 2x2+2ax+26=2x2+(a+2)x+a+6 これがxについての恒等式であるから、両辺の係数を比較 すると 2a=a+2, 2b=a+6 これを解いて a=2, b=4 ^²(6+x)) = (+2) -3r²-12r+5@r=1 / tu TUALET 微分係数 f'(a) の求め方 [1] 定義 (p.296 [①])に従って 求める [2] 導関数 f'(x) を求めて、 x=a を代入する。 の2通りがある。 例題 1931) では [2] の方法の方が早い。 なお、定義に従うなら f(-2+h)-f(-2) h f'(-2)=lim または f'(-2)=lim として計算。 ho x-2 f(x) f(-2) x-(-2) 係数比較法。 1

回答募集中 回答数: 0
数学 高校生

数I文字係数の方程式の問題です。 (3)の解説を見たのですが、理解ができなかったので、解説をお願いしたいです。

例題 次のxについての方程式を解け。 (1) x2+(a−2)x-2a=0 (2) ax²-2x-a=0 (3) ax-2ax+a=0 思考プロセス (2),(3)問題文では,単に「方程式」 となっており,2次, 1次方程式とは限らない。 場合に分ける (x2の係数)=0のとき (x2の係数) ≠0のとき 1次方程式を解く 2次方程式を解く (例題82参照) Action » 最高次の係数が文字のときは, 0かどうかで場合分けせよ (1) x2+(a−2)x-2a=0 より (x-2)(x+a)= 0 x=2, -a よって 10 (2)(ア)a=0のとき,この方程式は これを解くと x = 0 (イ) α = 0 のとき, 解の公式により -(-1) ± √(-1)²-a (-a) x= AN (ア), (イ)より a ² +1>0 より,これは解として適する。 α = 0 のとき α = 0 のとき (ア)~ (ウ)より x= la=0のとき a=2のとき -2x = 0 α = 0, 2 のとき = x=0 x= (3) ²x-2ax+α = 0 より a(a−2)x=-a (ア) α = 0 のとき, この方程式は 0.x = 0 よって, すべてのxで成り立つから, 解はすべての実数。 (イ) a=2のとき, この方程式は 0.x = -2 この式は成り立たないから,解はない。( 1 (ウ) α = 0, 2 のとき -2 a- 1± √a² +1 1$ 1± √²+1 Ca a 20 0 = 88 - 1 2-a x²+(a+B)x+αβ=0 (x+α)(x+β)=0 a=0のとき, 与えられ た方程式は1次方程式と なる。 のとき U すべての実数 解なし 08-28- x = _ 1 (²-x) (S 2-a S- 2次方程式 ax2+26′x+c=0 の解は es x= -b'±√√b²-ac a α = 0 の可能性があるか ら、いきなり両辺をαで 割ってはいけない。 x=- a a(a − 2) 3 章 a(a−2) ≠0 より,両辺 をa(a−2) で割って a-2 ROCK JOHAJ 8 2-a 2次関数と2次方程

回答募集中 回答数: 0
1/10