数学
高校生

解放2です。

基本例 点がF(3,0), F'(-3, 0)で点A(-4, 0) を通る楕円の方程式を求めよ。 p.585 基本事項 重要 149、 解法 1. 焦点の条件に注目。2つの焦点はx軸上にあり、かつ原点に関して対称であ あるから求める楕円の方程式は 1 (40) とおける。 焦点や長軸短軸についての条件に注目し, a, bの方程式を解く。 解法2. 楕円上の点をP(x, y) として、 楕円の定義 [PF+PF' = (一定)」に従い, 点 の軌跡を導く方針で求める。 |解法 1. 2点F(30) F'(-3, 0) が焦点であるから, 求 1焦点は2点 める楕円の方程式は 4-2 + 92 b2 ここで a2-b2=32 =1 (a>b>0) とおける。 A (-4, 0) は長軸の端点である から a=|-4|=4 y √7 (√a²-b², 0). (-√a²-6ª, 0) 焦点のx座標に注目。 y座標が0であるから, 楕円の頂点。 a b よって62=q-32=42-9=7 ゆえに、求める楕円の方程式は F' -3 0 3 4x ここではの値を求め なくても解決する。 x2y2 長軸 17 va2-62 =1 7 すなわち +2 =1 16 7 PがAに一致するとき? 解法 2. 楕円上の任意の点をP(x, y) とすると PF+PF'=AF+AF'=|3-(-4)|+|-3-(-4)|=8 <F, F′, A はx軸上の よって ゆえに √(x-3)2+y2+√(x+3)+y2=8 <PF+PF'=8 √(x-3)2+y2=8-√(x+3)2+y2 両辺を平方して整理すると 16√(x+3)2+y2=12x+64 両辺を4で割って, 更に平方すると 整理して 16(x2+6x+9+y2)=9x2+96x+256 7x2+16y2=112 よって、求める楕円の方程式は 16 7=1 ここでがなくな 次のような楕円の方程式を求めよ。 9 (1) 2点(20)(20) 焦点とし、この2点からの距離の和が6 (2)楕円 x2y2 3 5 =1と焦点が一致し、 短軸の長さが4 (3)長軸がx軸上,短軸がy軸上にあり、2点(-2.0) (1,2)を通る。 p.603

回答

まだ回答がありません。

疑問は解決しましたか?

この質問を見ている人は
こちらの質問も見ています😉