学年

教科

質問の種類

数学 高校生

数学II・Bの基礎問題精巧です このページのポイントに書いてある「ダメなとき」とはどんな時ですか? 例を使って教えていただけるとありがたいです

列は、数列の基本中の基本。 特に,一般項や和の公式は、意味も理解して, 二していこう。 175 112 等差数列 (II) 初項から第5項までの和が250, 初項から第20項までの和が-50 である等差数列{az}について 初項 α, 公差 d を求めよ. 4(2) (2) 初項から第n項までの和が最大となるようなnを求めよ. 精講 E また、一般に Snの最大 (あるいは最小)を考えるときは、まずSnではなく、 am の符号の変化に着目します。 an 初項α 公差dの等差数列の初項から第n項an までの和 S は次の 式で表せます。 S=1/2(+α)=1/12(24+(n-1)d) 和の公式 解答 5 20 (1) (2a+4d) =250, (2a+19d)=-50 より 2 2 a+2d=50 a=64 .. l2a+19d=-5 d=-7 (2)a=64+(n-1)(-7)=71-7n ひれを求める したがって, 1 〜 10 までは正で, a11 以降はすべて負. よって,初項から第10項までの和が最大. すなわち, n=10 のとき最大 ポイント 数列の和の最大・最小は,まず一般項の符号変化で考 えて, ダメなとき和の式を使う 演習問題 112 第5項が 84, 第20項が-51の等差数列{an} について (1) 初項α,公差dを求めよ. (2) 初項から第n項までの和 Sm をnで表せ. (3)Sの最大値とそのときのnの値を求めよ. 第7章

解決済み 回答数: 1
数学 高校生

至急お願いします!! 数2の式と証明の、最初の方の基礎問題です。 また、~からの問題で、rを使わなくてもできるやり方ってありますか? rが入ると複雑になって頭がごっちゃになっちゃって... 誰か教えてください🙏

基本 例題 2 二項展開式とその係数 (α-2b) の展開式で,bの項の係数は 00000 の項の係数は であ る。また,(x-2)の展開式で、xの項の係数は定数項は-□であ る。 [京都産大〕 基本1 指針 展開式の全体を書き出す必要はない。求めたい項だけを取り出して考える。 (a+b)" の展開式の一般項は Cra" "b" まず, 一般項を書き、指数部分に注目しての値を求める。 解答 (ウ),(エ)一般項は Cr(x2)-(-2)=Cx12-2. (-2)" XP =C,(-2),x12-2 ここで, 指数法則 α ÷ α"=an を利用すると x-12-2r x" =x12-2x12-3r x" したがって, 指数 12-3ヶ に関し, 問題の条件に合わせた方程式を作り,それを解く。 (a-2b) の展開式の一般項は Crα-(-26)"=Cr(-2)'a-rb" bの項はr=1のときで, その係数は 6C1(-2)=-12 2b の項はr=4のときで, その係数は 6C.(−2)*= 240 C1=6 C=C2=15, (-2)=16 また,(x-2) の展開式の一般項は Cr(x)(-2)-C(-2). *- x" 12-2r =Cr(-2)'.x12-2r-r =Cr(-2)' ・x12-3r ① xの項は, 12-3r=6よりr=2のときである。 その係数は,①から 6C2(-2)²="60 定数項は, 12-3ヶ=0よりr=4のときである。 したがって、 ①から «C(−2)*="240 (*) <(*)の形のままで考えると (ウ)の項は x-12-2 x" ゆえに x12-2x.x よって 12-2r=6+y これを解いて r=2 (エ) 定数項は xx 12-2 = x とすると 12-2r=r これを解いて=4

解決済み 回答数: 1
1/19