学年

教科

質問の種類

数学 高校生

なぜこの計算をするのかが分かりません 詳しく教えてください🙏

301 質を求めよ。ただし ■西大] 基本186190 つるから場合分けを 境目となる。 (2a) (2a)3-3a(2a)+5a³ Ba³-12a³+5a³ 000192 区間全体が動く場合の最大・最小 ①のののの (x)=10x+17x+44 とする。 区間 asxsa+3 におけるf(x)の 最大値を表す関数g(α) を, αの値の範囲によって求めよ。 SMART QTHINKING 最大・最小 グラフ利用 極値と端の値に注目 曲が変わると 区間 a≦x≦a+3 が動くから, αの値によって場合分けする 目はどこになるだろうか? 場合分けの境目はどこ 基本 190 yef(x) のグラフをかき, 幅3の区間 a≦x≦a+3 を左側から移動させながら考えよう。 大値をとるxの値が区間内にあるか, 区間の両端の値(α) f(a+3) のどちらが大 きいかに着目すればよい。 f(a)=f(a+3) となるαの値も境目となることに注意。 (x)=3x-20x+17=(x-1)(3x-17) a+3 <1 すなわち a < 2 のとき 17 x (x) = 0 とすると ... 1 17 x=1, 増減表から,y=f(x) のグラフは右下のようになる。 3 3 f'(x) + 0 - 0 + f(x) 極大 極小 小値をとるxの値 y=f(x)| 44 間に含まれる場合 g(a)=f(a+3)=(a+3)3-10(a+3)2 + 17 (a +3) +44 =a3-a²-16a+32 [2] at 3≧1 かつ α <1 すなわち -2≦a <1 のとき g(a)=f(1)=52 21 のとき,α)=f(a+3) とすると 整理すると a10a2+17a+44-a³-a2-16a+32 9a2-33a-12=0 最小 2a 3 x って (3a+1)(a-4)=0 a≧1 から a=4 17 3 7.1 直をとるxの値 [3] 1≦a <4 のとき g(a)=f(a)=a-10a² +17a+44 15.6 含まれない場合 [4] 4≦a のとき g(a)=f(a+3)=α-α-16a+32 4 [2] [1] y y=f(x); y y=f(x); [3] y | y=f(x); [4] y=f(x) 52 27 最小 Fa+3 32a x O 0. a1a+317 x 3 a a+3 6章 21 関数の値の変化 0 a. La+3 4 7 。g(a) [岡山大〕 a=4 のとき, 最大値を異なるxの値でとるが, xの値には言及していないので, 4≦α として [4] に含めた。 PRACTICE 1926 す関数 g(α) を αの値の範囲によって求めよ。 /(x)=2x-9x2+12x-2とする。 区間 a≦x≦a+1 における f(x) の最大値を表

回答募集中 回答数: 0
数学 高校生

222. 3行目の恒等式が成り立つ理由は何なのでしょう? また、この左辺は (mx+n)-x^3(x-4)でもいいのでしょうか? どっちでどっちを引くかは決まっているのでしょうか?? 最後に、「s,tはu^2-2u-2=0の解」とありますが u^2-2u-2=0はどこから出... 続きを読む

0 00000 演習 例題2224次関数のグラフと2点で接する直線 関数y=x(x-4) のグラフと異なる2点で接する直線の方程式を求めよ。 [類 埼玉大] 基本199 指針▷次の①~③の考え方がある [ただしf(x)=x(x-4), s≠t]。3の考え方で解いてみよう。 ①点(t, f(t)) における接線が, y=f(x)のグラフと点 (s, f(s)) で接する。 (s, f(s)), (t, f(t)) におけるそれぞれの接線が一致する。 ③ y=f(x)のグラフと直線y=mx+nがx=s,x=tの点で接するとして、 f(x)=mx+nが重解s, tをもつ。 → f(x)-(mx+n)=(x-s)(x-t)^ 解答 y=x(x-4) のグラフと直線y=mx+nがx=s,x=t (st) の点で接するとすると、次のxの恒等式が成り立つ。 x³(x-4)-(mx+n)=(x−s)²(x−t)² (左辺)=x^-4x-mx-n (右辺)={(x-s)(x-t)}'={x2-(s+t)x+st}2 =x4+(s+t)2x2+s2t2-2(s+t)x-2(s+t)stx+2stx2 =x¹−2(s+t)x³+{(s+t)²+2st}x²−2(s+t)stx+s²t² 両辺の係数を比較して -4=-2(s+t) -m=-2(s+t)st ①から s+t=2 ③から m=-8 2JX ①, 0=(s+t)^2+2st ③, -n=s²t² ...... 4 これと②から ④から st=-2 n=-4 ②, ya NX 下の別解は、指針の①の考 え方によるものである。 10 <s≠t を確認する。 s, tu²-2u-2=0の解で,これを解くと u=1± √3 よって, y=x(x-4) のグラフとx=1-√3,x=1+√3の点 で接する直線があり, その方程式は y=-8x-4 別解y'′=4x-12x² であるから, 点 (t, t (t-4)) における接線の方程式は y-t³(t-4)=(4t³-12t²)(x-t) 5 y=(4t³-12t²)x-3t4+8t³ (*) x4-4x3=(4t3-12t2) x-3t+8t tと異なる重解をもつことである。 この直線がx=s (s≠t) の点でy=x(x-4) のグラフと接するための条件は, 方程式 (x-t)^{x^2+2(+-2)x+3t2-8t}=0 これを変形して よって, x2+2(-2)x+3t2-8t=0 Aの判別式をDとすると t2-2t-2=0 D=0 とすると このとき, Aの重解はs=-(t-2)=1+√3(複号同順) t=1±√3はピ-2t-2=0 を満たし 3+4+81³= -(t²-2t-2) (3t²-2t+2)−4=−4 D=(1-2)²-1·(31²-8t) = -2(t²—2t—2) これを解くと Aが, tと異なる重解 s をもてばよい。 t=1±√3 4t³-12t²=4(t²—2t-2)(t-1)-8=-8 ゆえに,(*) から よって, s≠tである。 y=-8x-4 SMA CH |√=3a おける すなわ この接 f( (t) Ot

回答募集中 回答数: 0
数学 高校生

東工大数学 採点していただきたいです。 途中まで(ノートの左下)で間違えています 50点中何点もらえますか?

24 する。 辺ABを xl-x (0≦x<l) の比に内分する点Pと,辺ACをy: l-y (0≦y<1> の比に内 分する点Qをとり、線分BQ と線分 CP の交点をRとする。 このとき, RがAM に含まれるような (x,y) 全体をxy平面に図示し, その面積を求めよ。 (ただし、道 AB. 辺ACを0:1の比に内分する点とは,ともに点Aのこととする。) 2003年度 (3) △ABCにおいて, 辺ABの中点をM. 辺ACの中点をとする。 ポイント 前半は、平面ベクトルの典型問題である。 平面上のどのようなベクトルも その平面上の2つのベクトルa, a≠0. b=0, ax b) を用いて, Bb (a. B は実数) の形に表されること, そしてその表し方は1通りであることは重要な事実であ る。また、△ABCの間および内部にある点Pは, AP=αAB+ BAC (a+β≦1,420 B20) で表されることもマスターしておくべき基本事項である。 520) 不等式の表す領域の図示と面積を求めるための定積分計算である。 解法 △ABQにおいて, AQ=yAC (0≦y<1) であるか ら,実数s を用いて AR = (1-s) AB+syAC (0≦s≦1) ...... ① と表せる。 また, ACP において, AP=xAB (0≦x<1) であるから実数を用いて AR=AB+(1-1) AC (0≦t≦) ....... ② と表せる。 ABとACは1次独立 (AB AC. MEAN AB≠0. AC ±0) なので ①②より したがって. ①より AR=(1-1-4) AB+1-5 1-xy ここで -xyAC= x (1-y) 1-xy B 1-s=tx, sy=1-1 が成り立つ。 0≦x<1,0≦y<1に注意して, この2式からtを消去すると 1-1 E'S (1-x) -AB + Level B M O P _y(1-x) -AC 1-xy x(1-y) 1-xy とおくと AM= y (1-x) 9= 1-xy AM-AR AN-ACCA& AR=pAB+qAC=2pAM+2qAN となり、点Rが△AMN に含まれるためには xy- 2p+2q≦1④ が成り立つことが必要十分である。 ③を用いると, ④ ⑤ はそれぞれ y(1-x)206 1-xy x+y-2xy=-xy = 1-xy 0≦x<1,0≦y<1より. ⑤'は成り立つ。 また, 0≦x<1,0≦y<1に注意して, ④'を変形す ると よって, 0≦x<1,0≦y<1のもとで, ④’を満たす 点(x,y)をxy平面に図示すると、右図の斜線部 分(境界はすべて含む)になる。 すなわちy=1/1 23 2p20. 2q205062 [注]不等式 (x-2)(x-2/31) 2010/19 リー = x (1-y), -≥0. 1-xy 5- £² (1.-7. 3) 4 S= 9 2 ---- (10)+ §3 平面図形 129 UN + 1/23 を描く。 次に、この境界線で区切られた3つの部分の1つを選 y= の表す領域を図示するには、まず境界線 (x-2)(x-2)=1/ *3 び、その中の1つの点の座標を不等式に代入してみて、成り立てばその点を含む部分に 斜線を施し(同時に境界線をまたいだ隣の隣にも斜線を施す)。 成り立たなければ隣の 部分に斜線を施す。 正領域∫ (x,y) > 0.負領域f (x,y) <0は境界線をまたいで交互に 現れることを利用するのである。 さて 求める面積をSとすると

回答募集中 回答数: 0
数学 高校生

印をつけたところの意味がよくわかりません!教えてください

516 第8章 図形の性質 例題252 回転体の体積 1辺の長さが24の正四面体 A-BCD を, 辺ABを軸 として1回転させるとき, △ACD が通過する部分の体 積を求めよ. 考え方 △ACD がABを軸として回転するとどうなるかのイメージ がつかみにくい場合は, ACD を部分的に見てみる.たとえ ば,辺 AC が ABを軸として回転するとどうなるだろうか. さらに、 辺CDの中点をNとしたとき, AN が ABを軸とし て回転するとどうなるか. このように,具体的に考えてみる。 B A C A AB⊥CM AB⊥ DM 議酸よって, AB⊥平面 MCD となり, ABCD 8 N 解答 ABの中点をMとすると, △ABCと△ABD は正三角 形より, B APOKAE したがって, CD 上の任意の点PとAとを結んだ線分 AP を,ABを軸として1回転させると, Aを頂点とする円錐 の側面になる. また, △ABC,△ABD は合同な正三角形より, AMCD はMC=MD の二等辺三角形であるから, CDの中点をN とすると,点Mと辺CD 上の点を結ぶ線分で最も長いもの は MD (MC) , 最も短いものはMN である. 取り SA RAKES 0040UNON 19TE **** B 正四面体であることを考えると,辺AD がAB を軸にして回転すると辺 AC の場合と AB & CC 同じになる このように考えると, △ACD の動く範囲が見えてくる. ここで,上の図のように, CからABに垂線を引いたときの AB との交点とNから ABに垂線を引いたときの交点は一致することを利用する. A N A D * TOBA DA D N AT&SHOWI 平面 MCD は回転軸 垂直な平面である. 点PがCDの中点 になるとき, 考え方 のNの場合になる. ras

回答募集中 回答数: 0
数学 高校生

(1)の回答で、OC2が何故正方形の対象軸になるかわからないです。教えて下さい

110 第3章 図形 2の正三角形OAB と3つの二等辺三角形 COA, C2AB, Cabo 1辺6の正方形 PQRS の折り紙がある。 下図のように、 以下の問いに答えよ.ただし, AB は PQ と平行とする。 をかいて切り取り, 三角錐を組み立てることにする.このとき、 63 立体と展開図 (1) 辺ABの中点をM, 直線ABと辺 QR の交点をDとするとき、 6 MD, BD の長さを求めよ。 S (2) CD, BC の長さを求めよ.. (3) 三角錐において, Cから △OABに下ろした垂線の足 をHとするとき, CHの長さ を求めよ. (4) 三角錐 C-OAB の体積V を求めよ. 精講 P A27B D C2 空間図形を考えるときの基本は, できるだけ平面図形としてとらえること R Satin C3 A STSMARTCO だから、立体と展開図の2つをにらみながら解答をつくっていきます (1),(2) まず,必要な部分だけをぬき出した図をかくことが大切です。 次に,直角がたくさんあるので,直角三角形をみつけて, 三平方の定理 三角比の利用を考えます (61). (3) 四面体 C-OAB の条件から, C から底面に下ろした垂線の足Hは△OAB の外心です (62) , △OABは正三角形なので, Hは重心でもあります。 ま た, 垂線を下ろしているので, (1), (2)と同様に直角三角形に着目します。 解答 (1) OC2 は正方形の対称軸で,Mは線分 OC2 上にあるので, MD=123×6=3 MB = 1 だから, BD=3-1=2 (2)△OACと△BAC において C A M あ BA国道 B B

回答募集中 回答数: 0
数学 高校生

要素の個数を正確に求めれません😭 求める過程を教えてください!

00000 重要 例題 10 グループの人数と集合 (3つの集合) 人は人のうち、漁市に行ったことのある人は5人であり市に行けたことのあ 人は13人市に行ったことのある人は30人であった人は市と日市に行 たことのある人はx人, A市と C 市に行ったことのある人は9人, B市とC のある人は3人, A市にもB市にもC市にも行ったことのない人は28人であ 市に行ったことのある人は10人であった。市との市に行った。 基本 3. p.275 STEP UP) った。このとき、xの値を求めよ。 CHART & SOLUTION 集合の応用問題 図をかいて 1 順に求める ② 方程式を作る ②の方針で解く。図において分割される各部分集合の要素の個数をかき込んでいく。 そして、 残った部分の要素の個数をα, bとおいて考える。 全体集合をひとし, A市, B市, C 市に行ったことのある人全体の集合 を,それぞれA, B, C とする。 右の図のように, 要素の個数 α, bを 定めると50 a+(x-3)+3+6=50 b+(x-3)+3+7=13 これらの式を整理すると a+x=44 a+b+x=45 1, 3 ・U (100) a+b+14+(x-3) +7 +6 +3 +28=100 b+x=6 28 b B(13) x-3 ( NUAR BUA DURUM) -A (50) a 3 7 2, ①から a=44-x ②から b=6-x これらを③に代入して整理すると-x+50=45 よって x=5 6 14 C(30) n(ANBNC) #5 個数をかき込んでいく。 n(A)=50 ←n (B) =13 n(U)=100 Smanj な 0. C PRACTICE 10 3 ある高校の生徒140人を対象に, 国語、数学、英語の3教科のそれぞれについて、得 意か否かを調査した。 その結果, 国語が得意な人は86人、数学が得意な人は40人 た。そして,国語と数学がともに得意な人は18人, 国語と英語がともに得意な人は 15 人,国語または英語が得意な人は 101 人, 数学または英語が得意な人は5人い また,どの教科についても得意でない人は20人いた。このとき、3教科のすべてが 意な人は 人であり、3教科中1教科のみ得意な人は人である。[名城

回答募集中 回答数: 0
1/5