学年

教科

質問の種類

数学 高校生

なぜn<=kがいるんですか?

例題 B1.64 n≦k を仮定する数学的帰納法 **** +am²)=nanan+1 数列{a} はすべての自然数nに対して,3(a'+a2+ を満たし a=2 である.このとき,一般項 α, を推測し,これを証明せよ。 素 「考え方」 まずは具体的に書き出して一般項 α, を推測し,それが正しいことを数学的帰納法で 証明する.n=k のとき,3(a +α++α)=kakak+1となり,推測した an 解答 (n≦k) を a,a2, のため, a, A2, ...., ak に代入して ak+1のときも成り立つことを示せばよい. そ のすべてを仮定する必要がある [ 3(ai'+az² +....+am²)=nanan+1 ① で n=1 とすると, ・① とおく. 3a²=1 a1a2 a=2より, a2=6 ①で n=2 とすると, 3(ai2+a22)=2a2a3 wwwwwww a=2, a2=6 より a3=10 ①で n=3 とすると, 3(ai'+a2+a3)=3a3a4 す = a=2, a2=6, a=10より, a=14 したがって、数列{a} は,初項 2,公差4の等差数列、つ まり 一般項an は, an=2+(n-1) ・4=4n-2 と推測できる. …② ついて考え を計算する。 ②を数学的帰納法で証明する. (I) n=1のとき, a1=4・1-22 より ②は成り立つ . (II)n≦k を満たすすべての自然数nについて ②が成り立 つと仮定すると, ae=4l-2 (l=1,2, ①で n=k とすると, 3(a^2+a2+....+a)=kakak+1 k k) ・③ (③の左辺)=32(4e-2)=32(160-16ℓ+4) l=1 l=1 =3/16.12k(k+1)(2k+1)-16-1/2k(k+1)+4k} =k{8(k+1)(2k+1)-24(k+1)+12} =4k(4k²-1)=4k(2k+1)(2k-1) ・④ (③の右辺)=k(4h-2)ak+1=2k(2k-1)ak+1 を作るのがポイ 1を代入す a,a2,......, ak に ついての仮定が必要 になる. ・⑤ これにより ak+1 ④ ⑤より 4k(2k+1)(2k-1)=2k(2k-1)ak したがって, ak+1=2(2k+1)=4(k+1)-2 となり, n=k+1 のときも②は成り立つ. (I), (II)より、すべての自然数nについて, an=4n-2 2k (2k-1)(0) 両辺を割る. 第1

解決済み 回答数: 1
数学 高校生

数B 統計的な推測 仮説検定 (短期攻略共通テスト数学2BC) 解答の5,6行目で 2・(1-0.4772)って0.456にならなくないですか? また、z=2.0と出た時点で、z≧1.96(有意水準5%)の棄却域に入る、よって判断できる、という考え方ではだめですか?

954分 8点 62. 仮説検定 181 あるサイコロを720回投げたところ, 5の目が140回出た。 このサイコロ はるの目の出る確率が1/ -ではない, と判断してよいか検定してみよう。 このサイコロを投げて, 5の目が出る確率をp として,次の仮説を立てる。 帰無仮説 H: 対立仮説 H: イ 助が正しいとする。 サイコロを720回投げて, 5の目が出る回数をX と すると,確率変数Xの平均はウエオ,標準偏差はカキであるから, X-ウエオ 「カキ とおくと, Zは近似的に標準正規分布 N(0, 1)に従う。 X=140 のとき, Zの値はx=クケであるから, 有意水準 5% 有意水準 1% で検定するとサ で検定すると コ イの解答群 ① 6 2 p + 1/15 3 p + 1/14 コ サ の解答群 6 5の目が出る確率は1/3であると判断できる 0.5の目が出る確率は1/8 ではないと判断できる 05の目が出る確率が1/3 でないとは判断できない 解答 無仮説 Hop= = (①), 対立仮説 H: pキ (③) 両側検定 。 6 変数Xは二項分布 B (720,118) に従うので,平均は Hip>/ とすると 6 片側検定になる。 =120, 標準偏差は720. 15 66 =10 である。 1z= X-120 とおく。 10 X=140 のとき, z=2.0であり P(Z≦-2.0, 2.0≦Z)=2·(1-0.4772) =0.456 であるから,有意水準 5% で検定すると,このサイコロ 55の目が出る確率はではないと判断できる(①)。 6 また,有意水準 1% で検定すると,このサイコロは,5 の目が出る確率が 確率がでないとは判断できない(②)。 6 -P(0≤Z≤2.0) =0.4772 H を棄却する。 ◆H を棄却できない。

解決済み 回答数: 1