数学
高校生
解決済み

なぜn<=kがいるんですか?

例題 B1.64 n≦k を仮定する数学的帰納法 **** +am²)=nanan+1 数列{a} はすべての自然数nに対して,3(a'+a2+ を満たし a=2 である.このとき,一般項 α, を推測し,これを証明せよ。 素 「考え方」 まずは具体的に書き出して一般項 α, を推測し,それが正しいことを数学的帰納法で 証明する.n=k のとき,3(a +α++α)=kakak+1となり,推測した an 解答 (n≦k) を a,a2, のため, a, A2, ...., ak に代入して ak+1のときも成り立つことを示せばよい. そ のすべてを仮定する必要がある [ 3(ai'+az² +....+am²)=nanan+1 ① で n=1 とすると, ・① とおく. 3a²=1 a1a2 a=2より, a2=6 ①で n=2 とすると, 3(ai2+a22)=2a2a3 wwwwwww a=2, a2=6 より a3=10 ①で n=3 とすると, 3(ai'+a2+a3)=3a3a4 す = a=2, a2=6, a=10より, a=14 したがって、数列{a} は,初項 2,公差4の等差数列、つ まり 一般項an は, an=2+(n-1) ・4=4n-2 と推測できる. …② ついて考え を計算する。 ②を数学的帰納法で証明する. (I) n=1のとき, a1=4・1-22 より ②は成り立つ . (II)n≦k を満たすすべての自然数nについて ②が成り立 つと仮定すると, ae=4l-2 (l=1,2, ①で n=k とすると, 3(a^2+a2+....+a)=kakak+1 k k) ・③ (③の左辺)=32(4e-2)=32(160-16ℓ+4) l=1 l=1 =3/16.12k(k+1)(2k+1)-16-1/2k(k+1)+4k} =k{8(k+1)(2k+1)-24(k+1)+12} =4k(4k²-1)=4k(2k+1)(2k-1) ・④ (③の右辺)=k(4h-2)ak+1=2k(2k-1)ak+1 を作るのがポイ 1を代入す a,a2,......, ak に ついての仮定が必要 になる. ・⑤ これにより ak+1 ④ ⑤より 4k(2k+1)(2k-1)=2k(2k-1)ak したがって, ak+1=2(2k+1)=4(k+1)-2 となり, n=k+1 のときも②は成り立つ. (I), (II)より、すべての自然数nについて, an=4n-2 2k (2k-1)(0) 両辺を割る. 第1

回答

✨ ベストアンサー ✨

最初のn=1,2,3でanを推測した時を考えましょう。
a2を知るにはa1が必要でしたね。
a3を知るにはa1とa2が必要でしたね。
a4を知るにはa1とa2とa3が必要でしたね。
与えられた式を見ると、an+1を知るにはa1〜anまでの情報が必要ですよね。an+1について解く(an+1=の形にする)と理解できると思います。つまり今回はa1〜akまでの成立を仮定した時にak+1が推測した時数列の条件を満たしていれば数学的帰納法により示されるわけです。

この回答にコメントする
疑問は解決しましたか?