学年

教科

質問の種類

数学 高校生

赤線部分の意味が分かりません🙇🏻‍♀️

重要 例題 57 独立な試行の確率の最大 423 00000 さいころを続けて100回投げるとき,1の目がちょうど回 (0≦k≦100) 出る確 率は 100Ck × 解答 6100 であり,この確率が最大になるのはk= のときである。 [慶応大] 基本49 かし,確率は負の値をとらないことと nCr= や階乗が多く出てくることから, 比 pk+1 (ア) 求める確率をDとする。 1の目が回出るとき,他の目が100回出る。 (イ)確率pk の最大値を直接求めることは難しい。 このようなときは,隣接する2項 k+1とかの大小を比較する。大小の比較をするときは,差をとることが多い。し n! r!(n-r)! を使うため、式の中に累乗 をとり、1との大小を比べるとよい。 þk pk Dk+11pk<D+1 (増加), pk pk+1 <1⇔pk>ph+1 (減少) CHART 確率の大小比較 Et pk+1 をとり、1との大小を比べる pk さいころを100回投げるとき, 1の目がちょうど回出る 確率を とすると 6 Dk = 100 Ck ( 11 ) * ( 5 ) 100 * = 100 Cr× 75100-k 6100 pk+1 100!.599-k ここで × pk (k+1)!(99-k)! k!(100-k)! 100!-5100-k 出 k! (100-k)(99-k)! 599-k 100-k (k+1)k! 5.59-5(k+1) (99-k)! Dk+1 > 1 とすると >1 pk 5(k+1) 両辺に 5(k+1) [0] を掛けて100k5(k+1) 10月 「反復試行の確率。 pk+1=100C(+) X 5100-k+1) 6100 ・・・の代わりに +1とおく。 2章 独立な試行・反復試行の確率 95 これを解くと k<- =15.8··· 6 よって, 0≦k≦15のとき Pr<Pk+1 は 0100 を満たす 整数である。 Dk+1 <1 とすると 100-k<5(k+1) pk pkの大きさを棒で表すと 95 これを解いて k> -=15.8・・・ 最大 (C) 増加 減少 よって, 16のとき pk> Pk+1 したがって po<かく...... <か15<16, P16> D17>>P100 2012 よって, Dr が最大になるのはk=16のときである。 15 17 16 100/ 99

回答募集中 回答数: 0
数学 高校生

この問題の1番について、 a+5、a +3を2つの自然数 を用いて表していると思うのですが、なぜ文字は自然数 K のみだけ、とかじゃだめなんでしょうか?

例題 108 倍数 互いに素に関する証明 今は自然数とする。 α+5は4の倍数であり, α+3は6の倍数であると α+9は12の倍数であることを証明せよ。 自然数αに対し, a と α+1は互いに素であることを証明せよ。 CHART & SOLUTION 倍数である, 互いに素であることの証明 p.426 427 基本事項 1.5 を自然数として α+5=4m, a+3=6nと表される。そして、「αの倍数かつ の倍数ならば ともの最小公倍数の倍数」であることを利用する。 また、aとbが互いに素のとき 「akが6の倍数ならば、kはもの倍数」であることを 利用してもよい ( 参照)。 (2) 互いに素である 最大公約数が1 最大公約数をg とおいて,g=1であることを証明すればよい。 自然数 A,Bについて AB=1 A=B=1 を利用する。 解答 なぜ 同じ買だめ? 経と同じ異だめ? (1)+5,α+3 は,自然数 m n を用いて a+5=4m, a+3=6n と表される。 a+9=(a+5)+4=4m+4=4(m+1) ① a+9=(a+3)+6=6n+6=6(n+1) ② よって、 ① より α+9 は4の倍数であり, ② よりα+9 は 6 の倍数でもある。 したがって, α+9は4と6の最小公倍数12の倍数である Tisan's 割る数が 4章 互いにか13 素数とは 別解 (1) ① ② から 4(m+1)=6(n+1) すなわち 2(m+1=3(n+1) 2と3は広いに素である から m+1は3の倍数 である。 よって m+1=3k(kは自然数) と表される。ゆえに a+9=4(m+1) 数と倍数

回答募集中 回答数: 0
数学 高校生

2番の赤線を引いたAHの長さはどこでわかるんですか?

000 0.264 基本事項 e S XOXsine 1 FINA 基本例 163 図形の分割と面積 (1) 次のような四角形ABCD の面積Sを求めよ。 平行四辺形ABCD で, 対角線の交点を0とすると AC=10, BD=6√2, ∠AOD = 135° 00000 AD/BCの台形ABCD で, AB = 5, BC = 8, BD = 7, ∠A=120° 指針 解答 /P.265 基本事項 基本 162 四角形の面積を求める問題は, 対角線で2つの三角形に分割して考える。 (1) 平行四辺形は, 対角線で合同な2つの三角形に分割されるから S=2△ABD また, BO=DO から AABD=2A0AD よって、 まず △OAD の面積を求める。 (2) 台形の面積)=(上底+下底)×(高さ)÷2 が使えるように,上底 AD の長さと高 さを求める。 まず, △ABD (2辺と1角が既知) において余弦定理を適用。 CHART 四角形の問題 対角線で2つの三角形に分割 (1) 平行四辺形の対角線は,互いに他を2等分するから =1/2AC=5, OA= OD=BD=3√2 AOAD = 2 JA A EL D 135° 0 √2 15 267 | (*) △OAB と △OAD は, それぞれの底辺を OB, OD とみると, OB=OD で, 高さが同じであるから,そ の面積も等しい。 C 参考 下の図の平行四辺形 の面積Sは -AC・BD sin 0 S=1/2A1 B 1/13 OA・OD sin 135 1/12・5・3/21/12=12 5.3√2. (*) S=2AABD=2.2A0AD =4• -=30 (2)△ABD において,余弦定理によりA 2 A ADS- 練習 163 (2) 参照] D 4 4章 1 三角形の面積、空間図形への応用 ゆえに を求めても よって 内角であ A <180° nA<l D 72=52+AD2-2・5・AD cos 120° 5 ゆえに AD2+5AD-24=0 120° 7 よって (AD-3)(AD+8)=0+4 B C BH C AD> 0 であるから AD=3 8 -, a,b,c ど, 薫が比較 頂点Aから辺BC に垂線 AH を引くと AH=ABsin∠ABH, ∠ABH=180°-∠BAD=60° <AD / BC 利用する Jih 1200 よって S=(AD+BC)AH 18 (上底+下底)×(高さ) ÷ 2 =(3+8)-5 sin 60°= 55√3 CA 18 162 練習 次のような四角形ABCD の面積Sを求めよ (O は ACとBDの交点)。 ② 163 (1) 平行四辺形ABCD で, AB=5, BC=6, AC=7 (2)平行四辺形ABCD で, AC=p, BD=g, ∠AOB=0円 (3)AD // BCの台形ABCD で, BC = 9,CD=8, CA=4√7, ∠D=120° Sare

未解決 回答数: 1
数学 高校生

例題68.2 (赤で書いているところは無視してください) 2枚目のように、自然対数をとった時yを|y|にしていたら 「x>0よりy>0」の記述はなくても大丈夫ですか?

基本 例題 68 対数微分法 次の関数を微分せよ。 (x+2)4 (1)y= y= 3/ x²(x²+1) (2)y=xxx>0) 00000 [(2) 岡山理科大] 基本 67 利用。 x) x) るから ex) とら |指針 (1)右辺を指数の形で表し,y=(x+2) xf (x+1)として微分することもできるが 計算が大変。 このような複雑な積・商・累乗の形の関数の微分では, まず, 両辺 (の絶 対値) の自然対数をとってから微分するとよい。 →積は和,商は差, 乗は倍となり, 微分の計算がらくになる。 (2)(x)=x-1 や (α*)' =α*10ga を思い出して, y'=xxxl=x* または y=x*10gxとするのは誤り! (1) と同様に,まず両辺の自然対数をとる。 CHART 累乗の積と商で表された関数の微分 両辺の対数をとって微分する (1) 両辺の絶対値の自然対数をとって log|y|=//{410g|x+2|-210g|x|-log(x+1)} 解答 両辺をxで微分して1=13142 2 2x y x x2+1 よって y'= 1/3 y (x+2) = 1.4x(x2+1)-2(x+2)(x+1)-2x2(x+2) (x+2)x(x+1) 1-2(4x-x+2) 3 3(x+2)x(x+1) Vx2(x2+1) 2(4x2-x+2) 3/ x+2 3x(x+1) Vx(x+1) (2)x>0であるから, y>0である。 両辺の自然対数をとって 両辺をxで微分して logy=xlogx y = 1.10gx+x.- = y y=(logx+1)y=logx+1)x* よって ||y|= x+2/ |x(x²+1) として両辺の自然対数をと (対数の真数は正)。 なお, 常に x 2 +1> 0 対数の性質 loga MN=loga M+logaN M loga N -=log.M-loga N logaM=kloga M (a>0, a+1, M>0, N>0) 両辺>0を確認。 <logy をxで微分すると x (logy)'=y'

未解決 回答数: 1
数学 高校生

一次不等式の問題(2)です。 (a+2)x<4がx<4になるようにするんですけどどうして毎回場合分けしないといけないんですか。この場合だったら場合分けしたくてもすぐにa=-1って出て他の値は当てはまらないってすぐわかると思いました

重要 例題 38 文字係数の1次不等式 (1) 不等式a(x+1) >x+α を解け。 ただし, αは定数とする。 000 (2) 不等式 ax<4-2x<2x の解が1<x<4であるとき, 定数αの値を漁 (2)類駒澤大] 基 基本34人 個す 指針 文字を含む1次不等式 (Ax > B, Ax <B など) を解くときは,次のことに注意数と A=0のときは、両辺をAで割ることができない。 AK0 のときは, 両辺を4で割ると不等号の向きが変わる。いうと指 (1) (a-1)x>a (a-1) と変形し, a-1>0, a1=0,α-1<0の各場合に分けて (2)ax<4-2x<2xは連立不等式 ax<4-2x 4-2x<2x と同じ意味。 まず,Bを解く。 その解と A の解の共通範囲が1<x<4となることが条件。 文字係数の不等式 割る数の符号に注意 0で割るのはタ CHART (a-1)x>a(a-1) [1] α-1>0 すなわちα>1のとき ① x>a まず, AxBO ①の両辺を で割る。 不等号の 0 > 0 は成り立たな 負の数で割ると の向きが変わる。 (1) 与式から 解答 [2] α-1=0 すなわち α=1のとき これを満たすxの値はない。 ①は 0x0 変わらない [3] α-1 <0 すなわち α <1のとき a>1のとき x>a, x<a よって a<1のとき a=1のとき 解はない, x<a 検討 (2) 4-2x<2x から -4x <-4 A=0のときの不 よって x>1 ゆえに,解が1< x < 4 となるための条件は, Ax>Bの解 ax <4-2x ...... ①から (a+2)x <4 ...... ① の解が x<4となることである。 [1] α+2>0 すなわち α> - 2 のとき,②から ② よって =0のとき、不等 0.x>B B0 なら 解はない なら解はすべ 4 x< よって a+2 4 a+2 =4 [I] 実数 ゆえに 4=4(a+2) よって a=-1 両辺に α+2 (≠0) これはα>-2を満たす。不 けて解く。 [2] α+2=0 すなわち α=-2 のとき,②は 0·x <4 よって、解はすべての実数となり、条件は満たされな 04は常に成り立 [3] α+2<0 すなわち α <-2 のとき,②から ら,解はすべての 4 a+2 このとき条件は満たされない。 x<4と不等号の [1]~[3] から a=-1 違う。 練習 (1) 不等式ax>x+a2+α-2を解け。 ただし, αは定数とする。 ④ 38 (2) 不等式

回答募集中 回答数: 0
数学 高校生

数1の一次不等式の問題⑴です。a-1じゃなくてaで考えてないのはなぜですか?aで考えてもいけますか?

重要 例題 38 文字係数の1次不等式 (1) 不等式a(x+1)>x+αを解け。 ただし, αは定数とする。 0000 (2) 不等式 ax<4-2x<2xの解が1<x<4であるとき, 定数αの値を求めよ。 [(2) 類 駒澤大] 基本 34 重要 指針 文字を含む1次不等式(Ax> B, Ax<B など)を解くときは,次のことに注意。 ・A=0のときは,両辺を4で割ることができない。 一般に、「0」で割る」 •A0 のときは、両辺を4で割ると不等号の向きが変わる。いうことは考えない (1) (a-1)x>a(a-1) と変形し, a-1>0, a-1=0, a-1<0の各場合に分けて ax<4-2x ...... A (2) ax<4-2x<2x は連立不等式 と同じ意味。 4-2x<2x B まず,Bを解く。 その解とAの解の共通範囲が1<x<4となることが条件。 CHART 文字係数の不等式 割る数の符号に注意 0で割るのはダメ (1) 与式から (a-1)x>a(a-1 ...... ①まず, Ax>Bの形に [1] α-1>0 すなわちα>1のとき x>a 解答 [2] α-1=0 すなわち α=1のとき これを満たすxの値はない。 [3] α-1 <0 すなわち α <1のとき 「α>1のとき x>a, よって (2) 4-2r a=1のとき 解はない, a<1のとき x <a ①は 0.x>0 sl>S ① x<a>x ①の両辺をα-1 (>0 で割る。 不等号の向 変わらない。 <0> 0 は成り立たない 負の数で割ると、不 の向きが変わる。 検討チ

未解決 回答数: 1
数学 高校生

赤で印を付けた所のan=にする方法が分かりません😭隣の※の所をみても分かりません💦

468 基本 36 an+= pa,+g”型の漸化式 解答 00000 =3a=20.3 によって定められる数列(大般項を求めよ。 用して考えてみよう。 指針 漸化式 α+1=pan+f(n) において,f(n)=g" の場合の解法の手順は 基本 34 基本42,45 ①f(n) に n が含まれないようにするため, 漸化式の両辺を Q+1で割る。 anti-.an1 gg” - f(n) = となり,nが含まれない。 [2]=b, とおくとbn+1= q →bm+1=@bn+の形に帰着。・・ n+1で割る CHART 漸化式 αn+1=pan+g" 両辺を g" an+1=2an+3+1 の両辺を 37+1で割ると =b とおくと 2 • an+12.an 3n+1 3 3n = bn+1= -bn+1dc=d. 2an 2 an +1 3n+1 33" の方針 an 3 3" (S+ d) Stad 2 これを変形すると bn+1-3= (bn-3)-d 3 a1 3 また b1-3=3 -3= --3=-2\ 3 2 よって, 数列{bm-3}は初項-2,公比 の等比数列で 2n-1 bn-3=-2(3) an=3"bn=3.3"-3・2・2n-1(*) 33.2" ゆえに an=3-2(3) n-1 an+1=pan+gなど 既習の漸化式に帰着 させる。 特性方程式 2 a=1/23a+1から α=3 2 よって J [別解] an+1=2an+3+1 の両辺を2"+1で割ると An+1 an 3 + 2n+1 (22) an 3 \n+1 a1 3 + 2" よって, n≧2のとき n=1/3\k+1 bn=b₁+ k=11 n-1/2 =b₁+ Σ k=1\ (2)()-1) 3 2 2 =30 3 ) = = 2¹ 2 2/10)+ ① 3-13() -3.0 ((+2 =3.31.2.5 2-1 31 an+1=pantq は、 辺を+1で割る方法 でも解決できるが, 差数列型の漸化式の 処理になるので,計算 は上の解答と比べや や面倒である。 n=1のとき 3(1/2)-3=12/27 b=1/2から、①はn=1のときも成り立つ。 したがって an=2"bn=3.3"-3.2"=3" + 1-3.2" ゲーム a

未解決 回答数: 0