数学
高校生

2番の赤線を引いたAHの長さはどこでわかるんですか?

000 0.264 基本事項 e S XOXsine 1 FINA 基本例 163 図形の分割と面積 (1) 次のような四角形ABCD の面積Sを求めよ。 平行四辺形ABCD で, 対角線の交点を0とすると AC=10, BD=6√2, ∠AOD = 135° 00000 AD/BCの台形ABCD で, AB = 5, BC = 8, BD = 7, ∠A=120° 指針 解答 /P.265 基本事項 基本 162 四角形の面積を求める問題は, 対角線で2つの三角形に分割して考える。 (1) 平行四辺形は, 対角線で合同な2つの三角形に分割されるから S=2△ABD また, BO=DO から AABD=2A0AD よって、 まず △OAD の面積を求める。 (2) 台形の面積)=(上底+下底)×(高さ)÷2 が使えるように,上底 AD の長さと高 さを求める。 まず, △ABD (2辺と1角が既知) において余弦定理を適用。 CHART 四角形の問題 対角線で2つの三角形に分割 (1) 平行四辺形の対角線は,互いに他を2等分するから =1/2AC=5, OA= OD=BD=3√2 AOAD = 2 JA A EL D 135° 0 √2 15 267 | (*) △OAB と △OAD は, それぞれの底辺を OB, OD とみると, OB=OD で, 高さが同じであるから,そ の面積も等しい。 C 参考 下の図の平行四辺形 の面積Sは -AC・BD sin 0 S=1/2A1 B 1/13 OA・OD sin 135 1/12・5・3/21/12=12 5.3√2. (*) S=2AABD=2.2A0AD =4• -=30 (2)△ABD において,余弦定理によりA 2 A ADS- 練習 163 (2) 参照] D 4 4章 1 三角形の面積、空間図形への応用 ゆえに を求めても よって 内角であ A <180° nA<l D 72=52+AD2-2・5・AD cos 120° 5 ゆえに AD2+5AD-24=0 120° 7 よって (AD-3)(AD+8)=0+4 B C BH C AD> 0 であるから AD=3 8 -, a,b,c ど, 薫が比較 頂点Aから辺BC に垂線 AH を引くと AH=ABsin∠ABH, ∠ABH=180°-∠BAD=60° <AD / BC 利用する Jih 1200 よって S=(AD+BC)AH 18 (上底+下底)×(高さ) ÷ 2 =(3+8)-5 sin 60°= 55√3 CA 18 162 練習 次のような四角形ABCD の面積Sを求めよ (O は ACとBDの交点)。 ② 163 (1) 平行四辺形ABCD で, AB=5, BC=6, AC=7 (2)平行四辺形ABCD で, AC=p, BD=g, ∠AOB=0円 (3)AD // BCの台形ABCD で, BC = 9,CD=8, CA=4√7, ∠D=120° Sare

回答

三角形ABHが直角三角形になっているので、5sin60°というシンプルな三角比として捉えることができます。

ほい

なぜ5sin60°になるんですか?あと答えも出していただきたいです。

この回答にコメントする
疑問は解決しましたか?