学年

教科

質問の種類

数学 高校生

図形と計量 (2) なぜ、BE=5/3になるのか分かりません。 何度計算しても、分母が3になりません。

11:54 all 4G 98 × 高1・高2トップレベル数学IAIIB + C (ベクトル) 第4講三角比といえば 目 目次 追加済み 0.75× まだ (DE+3)=Fc(2.0x) 速度 1.00x AECB QAFADay [C (FB+3)-24 2(ER+3)=4EC EB+3-2 FB+ Ec= これと 10 BEEF (+1) 2 E D BE +5 5 2 BE = BE: 3 2 B 自動 CRECRUIT 10:58 25:40 LJ 三角比といえば・・・ 44 円に内接する四角形ABCD が AB=3, BC=2,CD=1, DA=4を満たしている. また, 直線AB と直線 CD の交点をE, 直線AD と直線BCの交点をF. 線分AC と 線分 BD の交点をPとし、 三角形BCE の外接円と直線 EF の交点でE以外のものを 点 Q とする. 次の各問いに答えよ. (1)点Qは三角形 CDF の外接円上にあることを示せ (2) 線分 BD, 線分 BE, 線分 DF. 線分 EF の長さをそれぞれ求めよ. (3) 四角形ABCDの面積Sを求めよ. (4) 線分AP の長さを求めよ. (5) sin∠APB の値を求めよ. 【答】 (1) 略 (2BD= 55 7 BE E-f. DF- DF=3. EF== 2065 (3) 2√6 12 (4) 6√385 35 4√6 (5) 11 【解答】 (1) B.C. Q. Eは同一円周上より, ∠CQE=∠ABC また, A, B, C, D は同一円周上より, ∠ABC = ∠CDF よって∠CQE=∠CDF より Q. C, D. F は同一円周上にある. (2) A, B, C, Dは同一円周上より ∠BAD + ∠BCD = よって cos∠BAD+ cos∠BCD=0 + 32+42-BD2 22+12-BD2 2×3×4 2×2×1 =0 55 BD= 7 方べきの定理より. BE(BE+3)=EC(EC+1) ………① BD²= 55 △EBCと△EDA が相似であることより EC (BE+3)=2:4 5 3 BE+3=2EC これを①に代入,整理することでBE = を得る.また,EC=13 である. メネラウスの定理より 7 DF EC AB DF 3 =1 =1 . DF= AF CD BE 3+0-14, AF-4+ AE=3+ DF +4 1 5 3 COS ∠BAD= 32+42-BD^ 2×3×4 より < 戻る 次へ >

解決済み 回答数: 1
数学 高校生

絶対値を含む方程式(場合分け)の範囲です。 1枚目2枚目のそれぞれ(2)の問題ですが、 X=1、-1を場合分けする際に 1枚目の時は(ⅱ)-1≦X≦1 2枚目の時は(ⅱ)-1≦X<1 なぜ一緒のこの2つ問題では符号が違うのでしょうか。 どういった違いがあるのでしょうか... 続きを読む

基礎問 18 絶対値記号のついた1次方程式 次の方程式を解け. (1) |.r-1|=2 |精講 |x+1|+|x-1|=4 絶対値記号の扱い方は11で学んだ考え方が大原則ですが、 合はポイントⅠの考え方が使えるならば、 場合分けが けラクです. (1) (解I) 解 HO |x-1|=2 は絶対値の性質より1=±2 よって, x=-1,3 (解Ⅱ) -11={ c-1|= だから, x-1 D (x≥1) -(x-1)(x<1) i) x≧1のとき ① は x-1=2 x=3 これは,x≧1 をみたす. ii) x<1のとき ①は -(x-1)=2 :.x=-1 これは, x<1 をみたす. よって, x=-1,3 (2) i) x<-1 のとき x+1<0, x-1 < 0 だから ②は(x+1)(x-1)=4 -2x=4 ... x=-2 これは,<-1 をみたす. i)-1≦x≦1 のとき +10, -1≦0 だから +1-(-1)- これをみたす (注)くのとき +1301>0 1ェー 28-4 ic これは、1<ェを (1) 甘)、血)より (2) A(-1). ら、②は 上の数直線により、 絶対値の 40となる で場合分 はじめにし た すかどう ① ェの値にかか ②x>1のとき (3) が大きくな くー1の ェが小さく ② ポイント いこと エック 演習問題 18 (1) ☆

解決済み 回答数: 1
数学 高校生

(1)の問題です。分からなくて解答見ました。 互除法を使って計算するところまでは理解したのですが、よってのあとからがわかりません。 解説お願いします🙇

本 例題 126 1次不定方程式の整数解 (1) 次の等式を満たす整数x、yの組を1つ求めよ。 (1) 11x+19y=1 465 ①①①① (2) 11x+19y=5 p. 463 基本事項 1.2 CHART & SOLUTION 1次不定方程式の整数解 ユークリッドの互除法の利用 (1)1119は互いに素である。 まず, 等式 1x +19y=1のxの係数 11 とyの係数 19 に 互除法の計算を行う。 その際, 11-19 であるから, 11を割る数, 19 を割られる数として 割り算の等式を作る。 a=11, 6=19 とおいて,別のように求めてもよい。 (2)xの係数とyの係数が (1) の等式と等しいから, (1) を利用できる。 (1)の等式の両辺を 5 倍すると 11(5x) +19(5y)=5 よって、 (1) で求めた解を x=p, y=q とすると, x=5p, y=5g が (2)の解になる。 解 (1) 19=11.1 +8 移すると 8=19-11・1 11=8・1+3 移すると 3=11-8・1 8=3・2+2 移すると 2=8-3-2 3=2・1+1 移すると よって 1=3-2-1 1-3-2-1-3-(8-3.2) 1 =8⋅(-1)+3.3=8⋅(-1)+(11-8.1).3 =11・3+8・(-4)=11・3+ (19-11・1・(-4) =11・7+19・(-4) 11・7+19・(-4)=1 なわち ① えに, 求める整数x、yの組の1つは x=7, y=-4 2 ①の両辺に5を掛けると 11(7・5)+19・{(-4)・5}=5 すなわち 11・35+19・(-20)=5 解 (1) α=11,6=19 とする。 8=19-11・1=b-a 3=11-81 =a-(b-a)-1=2a-b 2=8-3-2 =(b-a)-(2a-b).2 =-5a+3b 1=3-2.1 =(2a-b)-(-5a+3b)・1 =7a-4b すなわち 11・7+19・(-4)=1 よって, 求める整数x, yの 組の1つは x=7, y=-4 よって, 求める整数x, yの組の1つは x=35, y=-20 ■注意 (2) の整数解にはx=-3, y=2 という簡単なものも ある。 このような解が最初に発見できるなら,それを 答としてもよい。 RACTICE 126° 次の等式を満たす整数x, yの組を1つ求めよ。 (1) 19. +26y=1 (2) 19x+26y=-2 慎重に

解決済み 回答数: 1
数学 高校生

マーカーの部分を教えてほしいです。

92 重要 例題 54 1次関数の決定 (2) 関数y=ax-a+30≦x≦) の値域が 1≦y≦b であるとき,定数a, bo 値を求めよ。 CHART SOLUTION グラフ利用 端点に注目 1次関数 y=ax+b というと, α = 0 であるが,単に関数というときは, α=0 の場合も考えなければならない。 基本 この例題では,xの係数がαであるから α>0, a=0, a<0 の場合に分け て, 値域を求める。 ...... 次に,求めた値域が 1≦y≦b と一致するように a,bの連立方程式を作って解く。 このとき,得られたαの値が場合分けの条件を満たしているかどうか吟味する のを忘れずに。 x=0 のとき y=-a+3, x=2のとき y=a+3 [1] YA [1] α>0のとき この関数はxの値が増加するとyの値も増加するから, x=2 で最大値 6, x=0で最小値1をとる。 よって a+3=b, -a+3=1 1 これを解いて a=2, b=5 これは, α>0を満たす。 a+3 0 2 x x [2] a=0 のとき この関数は y=3 定数関数 このとき, 値域は y=3であり、1≦y≦bに適さない。 [3] α <0 のとき 31. この関数はxの値が増加するとyの値は減少するから, x=0 で最大値 6, x=2で最小値1をとる。 ba+3 よって -α+3=b, a+3=1 これを解いて a=-2,6=5 これは, a<0 を満たす。 1 a+3 0 2 [1]~[3]から (a,b)=(2,5),(-2,5) PRACTICE・・・ 54 ③ (1) 定義域が −2≦x≦2, 値域が −2≦y≦4 である1次関数を求めよ。 (2)関数y=ax+b (b≦x≦b+1)の値域が-3≦ys5であるとき、定数a, bo 値を求めよ。 (3)関数y=ax+b (1≦x≦3)の最大値が最小値の2倍であり、グラフが点 (1,2 を通るという。 定数a, b の値を求めよ。

解決済み 回答数: 1
数学 高校生

(1)の解答の"軸はy軸"という部分がわかりません。

解答 86 基本 例題 48 2次関数のグラフの位置関係 次の2次関数のグラフは, 2次関数 y= x2 のグラフをそれぞれどのよう 00000 基本例題 に平行移動したものかを答えよ。また,それぞれのグラフにおける軸と を求めよ。 (1) y=1/2x+1 (2)y=1/2(x+2)2 (3)y=1/2/(x-4)2+2 1p.83 基本事項4 基本49 CHART SOLUTION 2次関数y=a(x-p2gのグラフ y=ax2 のグラフをx軸方向に, y 軸方向にだけ平行移動 軸は直線xp, 頂点は点(b,g) (1)~(3)の関数はすべてy=1/2x-p2gの形であるから,そのグラフは, 1 2次関数 y=x2 のグラフを平行移動したグラフである。 よって,(1)~(3)において, p, g を求めればよい。 (2)x+2=x-(-2) すなわち y=1/2(x-2)とする。 (1)y軸方向に1だけ平行移動したもの。 軸は軸, 頂点は点 ( 0, 1) (2)与えられた関数の式を変形して y=1/2(x-(-2)2 よって, x軸方向に-2だけ平行移動したもの。 軸は直線x=-2, 頂点は点(-2,0) 8116 p = 0 つまり,x軸方向 には移動していない。 なお, y 軸を 「直線 x=0」とも表す。 次の2次関数 (1) y=2x2- CHART 解答 2次関 平方完 軸は 一般に すると ことに (1) I (2) (1) 2x2-6- =2{(x =2(x- よって したが になる。 ◆ 「2だけ平行移動」 ではない! 軸方向に 4, y 軸方向に2だけ平行移動したもの。 x+2=x-(-2) 軸は直線x=4, 頂点は点(42) と考える。 (1)|| y y (3) y また, (2)-xz == -{( =-( よっ した にな また, 2 x -20 2 4 14 x i PRACTICE・・・ 48 2次関数y=-3(x+2)- のグラフをx軸方向に 直線

解決済み 回答数: 1
数学 高校生

(2) のベン図のBの部分に2と9が入るのはなぜですか?

解 64 基本 例題 35 2つの集合と要素 00000 (1) U=(1, 2, 3, 4, 5, 6, 7} を全体集合とする。 Uの部分集合 A={1, 4), B={2, 4, 5, 6} について, 集合 ANB, AUB, AUB を (2) 全体集合 U={x/1≦x≦10, xは整数} の部分集合 A, B について、 A∩B={3, 6, 8), A∩B={4, 5, 7}, A∩B={1, 10} とする。 求めよ。 このとき, 集合 A, B, AUB を求めよ。 CHART 集合の要素 OLUTION ベン図の活用 p.62 基本事項 1 基本38 集合に関する問題は,ベン図 (集合の関係を表す図) をかくとわかりやすい。......!! (1) まず, A∩B の要素を求めて図に書き込む。 そして, A,Bの残りの要素を 書き込んでいく。 (2)要素のわかっている集合 A∩B, ANB, A∩B が図のどの部分かを調べて、 その要素を図に書き込んでいく。 (1) A∩B={4} よって, 右の図のようになり B 2 A∩B A∩B={2,5,6} AUB={1,3,4,7} AUB={3,7} (2)条件から、右の図のようになり U A={1,3, 6, 8, 10} 4 1 B={2,3, 6, 8, 9} 5 10 7 AUB ={1,2,3,6,8,9,10} 2 3/6/8 6 AUB B 基本 例題 36 実数全体を全体集合 C={x|k-5≦x≦k (1) 次の集合を求め (ア) A∩B (2) ACCとなる CHART SOL 解答 不等式で表され 集合の要素が入 すとわかりやす その際、端の で表しておく 例えば,P= (1) 右の図から (ア) A∩B={x|- (イ) AUB={xl (ウ) B={xx<- (エ) AUB={x| (2) ACCとなる k-5-2 6≦k+5 が同時に成り立 ①から k≤ 共通範囲を求め INFORMATIO (2) において, ACC′ となる A AUB すなわち, 1 置する会体 PRACTICE... 35% ② (1)=1,2,3,4,5,6, 7, 8} を全体集合とする。 Uの部分集合 A={2,5, B={1, 3, 5} について, 集合 ANB, AUB を求めよ。 (2)1桁の自然数を全体集合ひとし その2つの部 A∩B={3, 9}, A∩B={2,4 Bを求めよ。 6) PRACTICE・・・ 3 B={x|-3< (1)次の

解決済み 回答数: 1